Step |
Hyp |
Ref |
Expression |
1 |
|
noinfbday.1 |
⊢ 𝑇 = if ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 , ( ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
2 |
1
|
noinfno |
⊢ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) → 𝑇 ∈ No ) |
3 |
|
bdayval |
⊢ ( 𝑇 ∈ No → ( bday ‘ 𝑇 ) = dom 𝑇 ) |
4 |
2 3
|
syl |
⊢ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) → ( bday ‘ 𝑇 ) = dom 𝑇 ) |
5 |
4
|
adantr |
⊢ ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) → ( bday ‘ 𝑇 ) = dom 𝑇 ) |
6 |
|
iftrue |
⊢ ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 → if ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 , ( ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) = ( ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } ) ) |
7 |
1 6
|
syl5eq |
⊢ ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 → 𝑇 = ( ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } ) ) |
8 |
7
|
dmeqd |
⊢ ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = dom ( ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } ) ) |
9 |
|
1oex |
⊢ 1o ∈ V |
10 |
9
|
dmsnop |
⊢ dom { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } = { dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) } |
11 |
10
|
uneq2i |
⊢ ( dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∪ dom { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } ) = ( dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) } ) |
12 |
|
dmun |
⊢ dom ( ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } ) = ( dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∪ dom { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } ) |
13 |
|
df-suc |
⊢ suc dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) = ( dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) } ) |
14 |
11 12 13
|
3eqtr4i |
⊢ dom ( ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } ) = suc dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) |
15 |
8 14
|
eqtrdi |
⊢ ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = suc dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ) |
16 |
15
|
adantr |
⊢ ( ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) ) → dom 𝑇 = suc dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ) |
17 |
|
simprrl |
⊢ ( ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) ) → 𝑂 ∈ On ) |
18 |
|
eloni |
⊢ ( 𝑂 ∈ On → Ord 𝑂 ) |
19 |
17 18
|
syl |
⊢ ( ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) ) → Ord 𝑂 ) |
20 |
|
simprll |
⊢ ( ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) ) → 𝐵 ⊆ No ) |
21 |
|
simpl |
⊢ ( ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) ) → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) |
22 |
|
nominmo |
⊢ ( 𝐵 ⊆ No → ∃* 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) |
23 |
20 22
|
syl |
⊢ ( ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) ) → ∃* 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) |
24 |
|
reu5 |
⊢ ( ∃! 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ↔ ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ∃* 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ) |
25 |
21 23 24
|
sylanbrc |
⊢ ( ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) ) → ∃! 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) |
26 |
|
riotacl |
⊢ ( ∃! 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 → ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∈ 𝐵 ) |
27 |
25 26
|
syl |
⊢ ( ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) ) → ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∈ 𝐵 ) |
28 |
20 27
|
sseldd |
⊢ ( ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) ) → ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∈ No ) |
29 |
|
bdayval |
⊢ ( ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∈ No → ( bday ‘ ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ) = dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ) |
30 |
28 29
|
syl |
⊢ ( ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) ) → ( bday ‘ ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ) = dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ) |
31 |
|
simprrr |
⊢ ( ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) ) → ( bday “ 𝐵 ) ⊆ 𝑂 ) |
32 |
|
bdayfo |
⊢ bday : No –onto→ On |
33 |
|
fofn |
⊢ ( bday : No –onto→ On → bday Fn No ) |
34 |
32 33
|
ax-mp |
⊢ bday Fn No |
35 |
|
fnfvima |
⊢ ( ( bday Fn No ∧ 𝐵 ⊆ No ∧ ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∈ 𝐵 ) → ( bday ‘ ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ) ∈ ( bday “ 𝐵 ) ) |
36 |
34 20 27 35
|
mp3an2i |
⊢ ( ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) ) → ( bday ‘ ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ) ∈ ( bday “ 𝐵 ) ) |
37 |
31 36
|
sseldd |
⊢ ( ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) ) → ( bday ‘ ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ) ∈ 𝑂 ) |
38 |
30 37
|
eqeltrrd |
⊢ ( ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) ) → dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∈ 𝑂 ) |
39 |
|
ordsucss |
⊢ ( Ord 𝑂 → ( dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∈ 𝑂 → suc dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ⊆ 𝑂 ) ) |
40 |
19 38 39
|
sylc |
⊢ ( ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) ) → suc dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ⊆ 𝑂 ) |
41 |
16 40
|
eqsstrd |
⊢ ( ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) ) → dom 𝑇 ⊆ 𝑂 ) |
42 |
1
|
noinfdm |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = { 𝑧 ∣ ∃ 𝑝 ∈ 𝐵 ( 𝑧 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ) ) } ) |
43 |
42
|
adantr |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) ) → dom 𝑇 = { 𝑧 ∣ ∃ 𝑝 ∈ 𝐵 ( 𝑧 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ) ) } ) |
44 |
|
simplrl |
⊢ ( ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) ∧ 𝑝 ∈ 𝐵 ) → 𝑂 ∈ On ) |
45 |
44 18
|
syl |
⊢ ( ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) ∧ 𝑝 ∈ 𝐵 ) → Ord 𝑂 ) |
46 |
|
ssel2 |
⊢ ( ( 𝐵 ⊆ No ∧ 𝑝 ∈ 𝐵 ) → 𝑝 ∈ No ) |
47 |
46
|
ad4ant14 |
⊢ ( ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) ∧ 𝑝 ∈ 𝐵 ) → 𝑝 ∈ No ) |
48 |
|
bdayval |
⊢ ( 𝑝 ∈ No → ( bday ‘ 𝑝 ) = dom 𝑝 ) |
49 |
47 48
|
syl |
⊢ ( ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) ∧ 𝑝 ∈ 𝐵 ) → ( bday ‘ 𝑝 ) = dom 𝑝 ) |
50 |
|
simplrr |
⊢ ( ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) ∧ 𝑝 ∈ 𝐵 ) → ( bday “ 𝐵 ) ⊆ 𝑂 ) |
51 |
|
fnfvima |
⊢ ( ( bday Fn No ∧ 𝐵 ⊆ No ∧ 𝑝 ∈ 𝐵 ) → ( bday ‘ 𝑝 ) ∈ ( bday “ 𝐵 ) ) |
52 |
34 51
|
mp3an1 |
⊢ ( ( 𝐵 ⊆ No ∧ 𝑝 ∈ 𝐵 ) → ( bday ‘ 𝑝 ) ∈ ( bday “ 𝐵 ) ) |
53 |
52
|
ad4ant14 |
⊢ ( ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) ∧ 𝑝 ∈ 𝐵 ) → ( bday ‘ 𝑝 ) ∈ ( bday “ 𝐵 ) ) |
54 |
50 53
|
sseldd |
⊢ ( ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) ∧ 𝑝 ∈ 𝐵 ) → ( bday ‘ 𝑝 ) ∈ 𝑂 ) |
55 |
49 54
|
eqeltrrd |
⊢ ( ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) ∧ 𝑝 ∈ 𝐵 ) → dom 𝑝 ∈ 𝑂 ) |
56 |
|
ordelss |
⊢ ( ( Ord 𝑂 ∧ dom 𝑝 ∈ 𝑂 ) → dom 𝑝 ⊆ 𝑂 ) |
57 |
45 55 56
|
syl2anc |
⊢ ( ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) ∧ 𝑝 ∈ 𝐵 ) → dom 𝑝 ⊆ 𝑂 ) |
58 |
57
|
sseld |
⊢ ( ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝑧 ∈ dom 𝑝 → 𝑧 ∈ 𝑂 ) ) |
59 |
58
|
adantrd |
⊢ ( ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) ∧ 𝑝 ∈ 𝐵 ) → ( ( 𝑧 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ) ) → 𝑧 ∈ 𝑂 ) ) |
60 |
59
|
rexlimdva |
⊢ ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) → ( ∃ 𝑝 ∈ 𝐵 ( 𝑧 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ) ) → 𝑧 ∈ 𝑂 ) ) |
61 |
60
|
abssdv |
⊢ ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) → { 𝑧 ∣ ∃ 𝑝 ∈ 𝐵 ( 𝑧 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ) ) } ⊆ 𝑂 ) |
62 |
61
|
adantl |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) ) → { 𝑧 ∣ ∃ 𝑝 ∈ 𝐵 ( 𝑧 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ) ) } ⊆ 𝑂 ) |
63 |
43 62
|
eqsstrd |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) ) → dom 𝑇 ⊆ 𝑂 ) |
64 |
41 63
|
pm2.61ian |
⊢ ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) → dom 𝑇 ⊆ 𝑂 ) |
65 |
5 64
|
eqsstrd |
⊢ ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) → ( bday ‘ 𝑇 ) ⊆ 𝑂 ) |