Step |
Hyp |
Ref |
Expression |
1 |
|
noinffv.1 |
⊢ 𝑇 = if ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 , ( ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
2 |
|
iffalse |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 → if ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 , ( ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) = ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
3 |
1 2
|
syl5eq |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 → 𝑇 = ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
4 |
3
|
fveq1d |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 → ( 𝑇 ‘ 𝐺 ) = ( ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ‘ 𝐺 ) ) |
5 |
4
|
3ad2ant1 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑈 <s 𝑣 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) → ( 𝑇 ‘ 𝐺 ) = ( ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ‘ 𝐺 ) ) |
6 |
|
dmeq |
⊢ ( 𝑢 = 𝑈 → dom 𝑢 = dom 𝑈 ) |
7 |
6
|
eleq2d |
⊢ ( 𝑢 = 𝑈 → ( 𝐺 ∈ dom 𝑢 ↔ 𝐺 ∈ dom 𝑈 ) ) |
8 |
|
breq1 |
⊢ ( 𝑢 = 𝑈 → ( 𝑢 <s 𝑣 ↔ 𝑈 <s 𝑣 ) ) |
9 |
8
|
notbid |
⊢ ( 𝑢 = 𝑈 → ( ¬ 𝑢 <s 𝑣 ↔ ¬ 𝑈 <s 𝑣 ) ) |
10 |
|
reseq1 |
⊢ ( 𝑢 = 𝑈 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑈 ↾ suc 𝐺 ) ) |
11 |
10
|
eqeq1d |
⊢ ( 𝑢 = 𝑈 → ( ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ↔ ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) |
12 |
9 11
|
imbi12d |
⊢ ( 𝑢 = 𝑈 → ( ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ↔ ( ¬ 𝑈 <s 𝑣 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) |
13 |
12
|
ralbidv |
⊢ ( 𝑢 = 𝑈 → ( ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ↔ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑈 <s 𝑣 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) |
14 |
7 13
|
anbi12d |
⊢ ( 𝑢 = 𝑈 → ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ↔ ( 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑈 <s 𝑣 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) ) |
15 |
14
|
rspcev |
⊢ ( ( 𝑈 ∈ 𝐵 ∧ ( 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑈 <s 𝑣 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) → ∃ 𝑢 ∈ 𝐵 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) |
16 |
15
|
3impb |
⊢ ( ( 𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑈 <s 𝑣 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) → ∃ 𝑢 ∈ 𝐵 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) |
17 |
16
|
3ad2ant3 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑈 <s 𝑣 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) → ∃ 𝑢 ∈ 𝐵 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) |
18 |
|
simp32 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑈 <s 𝑣 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) → 𝐺 ∈ dom 𝑈 ) |
19 |
|
eleq1 |
⊢ ( 𝑦 = 𝐺 → ( 𝑦 ∈ dom 𝑢 ↔ 𝐺 ∈ dom 𝑢 ) ) |
20 |
|
suceq |
⊢ ( 𝑦 = 𝐺 → suc 𝑦 = suc 𝐺 ) |
21 |
20
|
reseq2d |
⊢ ( 𝑦 = 𝐺 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑢 ↾ suc 𝐺 ) ) |
22 |
20
|
reseq2d |
⊢ ( 𝑦 = 𝐺 → ( 𝑣 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝐺 ) ) |
23 |
21 22
|
eqeq12d |
⊢ ( 𝑦 = 𝐺 → ( ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ↔ ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) |
24 |
23
|
imbi2d |
⊢ ( 𝑦 = 𝐺 → ( ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ↔ ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) |
25 |
24
|
ralbidv |
⊢ ( 𝑦 = 𝐺 → ( ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ↔ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) |
26 |
19 25
|
anbi12d |
⊢ ( 𝑦 = 𝐺 → ( ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) ↔ ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) ) |
27 |
26
|
rexbidv |
⊢ ( 𝑦 = 𝐺 → ( ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) ↔ ∃ 𝑢 ∈ 𝐵 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) ) |
28 |
27
|
elabg |
⊢ ( 𝐺 ∈ dom 𝑈 → ( 𝐺 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↔ ∃ 𝑢 ∈ 𝐵 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) ) |
29 |
18 28
|
syl |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑈 <s 𝑣 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) → ( 𝐺 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↔ ∃ 𝑢 ∈ 𝐵 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) ) |
30 |
17 29
|
mpbird |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑈 <s 𝑣 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) → 𝐺 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ) |
31 |
|
eleq1 |
⊢ ( 𝑔 = 𝐺 → ( 𝑔 ∈ dom 𝑢 ↔ 𝐺 ∈ dom 𝑢 ) ) |
32 |
|
suceq |
⊢ ( 𝑔 = 𝐺 → suc 𝑔 = suc 𝐺 ) |
33 |
32
|
reseq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑢 ↾ suc 𝐺 ) ) |
34 |
32
|
reseq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑣 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝐺 ) ) |
35 |
33 34
|
eqeq12d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ↔ ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) |
36 |
35
|
imbi2d |
⊢ ( 𝑔 = 𝐺 → ( ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ↔ ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) |
37 |
36
|
ralbidv |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ↔ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) |
38 |
|
fveqeq2 |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑢 ‘ 𝑔 ) = 𝑥 ↔ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) |
39 |
31 37 38
|
3anbi123d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ↔ ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) ) |
40 |
39
|
rexbidv |
⊢ ( 𝑔 = 𝐺 → ( ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ↔ ∃ 𝑢 ∈ 𝐵 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) ) |
41 |
40
|
iotabidv |
⊢ ( 𝑔 = 𝐺 → ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) = ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) ) |
42 |
|
eqid |
⊢ ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) = ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) |
43 |
|
iotaex |
⊢ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) ∈ V |
44 |
41 42 43
|
fvmpt |
⊢ ( 𝐺 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } → ( ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ‘ 𝐺 ) = ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) ) |
45 |
30 44
|
syl |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑈 <s 𝑣 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) → ( ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ‘ 𝐺 ) = ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) ) |
46 |
|
simp1 |
⊢ ( ( 𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑈 <s 𝑣 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) → 𝑈 ∈ 𝐵 ) |
47 |
|
simp2 |
⊢ ( ( 𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑈 <s 𝑣 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) → 𝐺 ∈ dom 𝑈 ) |
48 |
|
simp3 |
⊢ ( ( 𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑈 <s 𝑣 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) → ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑈 <s 𝑣 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) |
49 |
|
eqidd |
⊢ ( ( 𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑈 <s 𝑣 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) → ( 𝑈 ‘ 𝐺 ) = ( 𝑈 ‘ 𝐺 ) ) |
50 |
|
fveq1 |
⊢ ( 𝑢 = 𝑈 → ( 𝑢 ‘ 𝐺 ) = ( 𝑈 ‘ 𝐺 ) ) |
51 |
50
|
eqeq1d |
⊢ ( 𝑢 = 𝑈 → ( ( 𝑢 ‘ 𝐺 ) = ( 𝑈 ‘ 𝐺 ) ↔ ( 𝑈 ‘ 𝐺 ) = ( 𝑈 ‘ 𝐺 ) ) ) |
52 |
7 13 51
|
3anbi123d |
⊢ ( 𝑢 = 𝑈 → ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = ( 𝑈 ‘ 𝐺 ) ) ↔ ( 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑈 <s 𝑣 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑈 ‘ 𝐺 ) = ( 𝑈 ‘ 𝐺 ) ) ) ) |
53 |
52
|
rspcev |
⊢ ( ( 𝑈 ∈ 𝐵 ∧ ( 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑈 <s 𝑣 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑈 ‘ 𝐺 ) = ( 𝑈 ‘ 𝐺 ) ) ) → ∃ 𝑢 ∈ 𝐵 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = ( 𝑈 ‘ 𝐺 ) ) ) |
54 |
46 47 48 49 53
|
syl13anc |
⊢ ( ( 𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑈 <s 𝑣 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) → ∃ 𝑢 ∈ 𝐵 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = ( 𝑈 ‘ 𝐺 ) ) ) |
55 |
54
|
3ad2ant3 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑈 <s 𝑣 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) → ∃ 𝑢 ∈ 𝐵 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = ( 𝑈 ‘ 𝐺 ) ) ) |
56 |
|
fvex |
⊢ ( 𝑈 ‘ 𝐺 ) ∈ V |
57 |
|
eqid |
⊢ ( 𝑢 ‘ 𝐺 ) = ( 𝑢 ‘ 𝐺 ) |
58 |
|
fvex |
⊢ ( 𝑢 ‘ 𝐺 ) ∈ V |
59 |
|
eqeq2 |
⊢ ( 𝑥 = ( 𝑢 ‘ 𝐺 ) → ( ( 𝑢 ‘ 𝐺 ) = 𝑥 ↔ ( 𝑢 ‘ 𝐺 ) = ( 𝑢 ‘ 𝐺 ) ) ) |
60 |
59
|
3anbi3d |
⊢ ( 𝑥 = ( 𝑢 ‘ 𝐺 ) → ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ↔ ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = ( 𝑢 ‘ 𝐺 ) ) ) ) |
61 |
58 60
|
spcev |
⊢ ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = ( 𝑢 ‘ 𝐺 ) ) → ∃ 𝑥 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) |
62 |
57 61
|
mp3an3 |
⊢ ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) → ∃ 𝑥 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) |
63 |
62
|
reximi |
⊢ ( ∃ 𝑢 ∈ 𝐵 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) → ∃ 𝑢 ∈ 𝐵 ∃ 𝑥 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) |
64 |
|
rexcom4 |
⊢ ( ∃ 𝑢 ∈ 𝐵 ∃ 𝑥 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ↔ ∃ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) |
65 |
63 64
|
sylib |
⊢ ( ∃ 𝑢 ∈ 𝐵 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) → ∃ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) |
66 |
16 65
|
syl |
⊢ ( ( 𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑈 <s 𝑣 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) → ∃ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) |
67 |
66
|
3ad2ant3 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑈 <s 𝑣 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) → ∃ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) |
68 |
|
simp2l |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑈 <s 𝑣 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) → 𝐵 ⊆ No ) |
69 |
|
noinfprefixmo |
⊢ ( 𝐵 ⊆ No → ∃* 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) |
70 |
68 69
|
syl |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑈 <s 𝑣 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) → ∃* 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) |
71 |
|
df-eu |
⊢ ( ∃! 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ↔ ( ∃ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ∃* 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) ) |
72 |
67 70 71
|
sylanbrc |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑈 <s 𝑣 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) → ∃! 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) |
73 |
|
eqeq2 |
⊢ ( 𝑥 = ( 𝑈 ‘ 𝐺 ) → ( ( 𝑢 ‘ 𝐺 ) = 𝑥 ↔ ( 𝑢 ‘ 𝐺 ) = ( 𝑈 ‘ 𝐺 ) ) ) |
74 |
73
|
3anbi3d |
⊢ ( 𝑥 = ( 𝑈 ‘ 𝐺 ) → ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ↔ ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = ( 𝑈 ‘ 𝐺 ) ) ) ) |
75 |
74
|
rexbidv |
⊢ ( 𝑥 = ( 𝑈 ‘ 𝐺 ) → ( ∃ 𝑢 ∈ 𝐵 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ↔ ∃ 𝑢 ∈ 𝐵 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = ( 𝑈 ‘ 𝐺 ) ) ) ) |
76 |
75
|
iota2 |
⊢ ( ( ( 𝑈 ‘ 𝐺 ) ∈ V ∧ ∃! 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) → ( ∃ 𝑢 ∈ 𝐵 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = ( 𝑈 ‘ 𝐺 ) ) ↔ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) = ( 𝑈 ‘ 𝐺 ) ) ) |
77 |
56 72 76
|
sylancr |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑈 <s 𝑣 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) → ( ∃ 𝑢 ∈ 𝐵 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = ( 𝑈 ‘ 𝐺 ) ) ↔ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) = ( 𝑈 ‘ 𝐺 ) ) ) |
78 |
55 77
|
mpbid |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑈 <s 𝑣 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) → ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) = ( 𝑈 ‘ 𝐺 ) ) |
79 |
5 45 78
|
3eqtrd |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑈 <s 𝑣 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) → ( 𝑇 ‘ 𝐺 ) = ( 𝑈 ‘ 𝐺 ) ) |