Metamath Proof Explorer


Theorem noinffv

Description: The value of surreal infimum when there is no minimum. (Contributed by Scott Fenton, 8-Aug-2024)

Ref Expression
Hypothesis noinffv.1 T=ifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x
Assertion noinffv ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGTG=UG

Proof

Step Hyp Ref Expression
1 noinffv.1 T=ifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x
2 iffalse ¬xByB¬y<sxifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x=gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x
3 1 2 eqtrid ¬xByB¬y<sxT=gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x
4 3 fveq1d ¬xByB¬y<sxTG=gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=xG
5 4 3ad2ant1 ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGTG=gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=xG
6 dmeq u=Udomu=domU
7 6 eleq2d u=UGdomuGdomU
8 breq1 u=Uu<svU<sv
9 8 notbid u=U¬u<sv¬U<sv
10 reseq1 u=UusucG=UsucG
11 10 eqeq1d u=UusucG=vsucGUsucG=vsucG
12 9 11 imbi12d u=U¬u<svusucG=vsucG¬U<svUsucG=vsucG
13 12 ralbidv u=UvB¬u<svusucG=vsucGvB¬U<svUsucG=vsucG
14 7 13 anbi12d u=UGdomuvB¬u<svusucG=vsucGGdomUvB¬U<svUsucG=vsucG
15 14 rspcev UBGdomUvB¬U<svUsucG=vsucGuBGdomuvB¬u<svusucG=vsucG
16 15 3impb UBGdomUvB¬U<svUsucG=vsucGuBGdomuvB¬u<svusucG=vsucG
17 16 3ad2ant3 ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGuBGdomuvB¬u<svusucG=vsucG
18 simp32 ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGGdomU
19 eleq1 y=GydomuGdomu
20 suceq y=Gsucy=sucG
21 20 reseq2d y=Gusucy=usucG
22 20 reseq2d y=Gvsucy=vsucG
23 21 22 eqeq12d y=Gusucy=vsucyusucG=vsucG
24 23 imbi2d y=G¬u<svusucy=vsucy¬u<svusucG=vsucG
25 24 ralbidv y=GvB¬u<svusucy=vsucyvB¬u<svusucG=vsucG
26 19 25 anbi12d y=GydomuvB¬u<svusucy=vsucyGdomuvB¬u<svusucG=vsucG
27 26 rexbidv y=GuBydomuvB¬u<svusucy=vsucyuBGdomuvB¬u<svusucG=vsucG
28 27 elabg GdomUGy|uBydomuvB¬u<svusucy=vsucyuBGdomuvB¬u<svusucG=vsucG
29 18 28 syl ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGGy|uBydomuvB¬u<svusucy=vsucyuBGdomuvB¬u<svusucG=vsucG
30 17 29 mpbird ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGGy|uBydomuvB¬u<svusucy=vsucy
31 eleq1 g=GgdomuGdomu
32 suceq g=Gsucg=sucG
33 32 reseq2d g=Gusucg=usucG
34 32 reseq2d g=Gvsucg=vsucG
35 33 34 eqeq12d g=Gusucg=vsucgusucG=vsucG
36 35 imbi2d g=G¬u<svusucg=vsucg¬u<svusucG=vsucG
37 36 ralbidv g=GvB¬u<svusucg=vsucgvB¬u<svusucG=vsucG
38 fveqeq2 g=Gug=xuG=x
39 31 37 38 3anbi123d g=GgdomuvB¬u<svusucg=vsucgug=xGdomuvB¬u<svusucG=vsucGuG=x
40 39 rexbidv g=GuBgdomuvB¬u<svusucg=vsucgug=xuBGdomuvB¬u<svusucG=vsucGuG=x
41 40 iotabidv g=Gιx|uBgdomuvB¬u<svusucg=vsucgug=x=ιx|uBGdomuvB¬u<svusucG=vsucGuG=x
42 eqid gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x=gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x
43 iotaex ιx|uBGdomuvB¬u<svusucG=vsucGuG=xV
44 41 42 43 fvmpt Gy|uBydomuvB¬u<svusucy=vsucygy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=xG=ιx|uBGdomuvB¬u<svusucG=vsucGuG=x
45 30 44 syl ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGgy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=xG=ιx|uBGdomuvB¬u<svusucG=vsucGuG=x
46 simp1 UBGdomUvB¬U<svUsucG=vsucGUB
47 simp2 UBGdomUvB¬U<svUsucG=vsucGGdomU
48 simp3 UBGdomUvB¬U<svUsucG=vsucGvB¬U<svUsucG=vsucG
49 eqidd UBGdomUvB¬U<svUsucG=vsucGUG=UG
50 fveq1 u=UuG=UG
51 50 eqeq1d u=UuG=UGUG=UG
52 7 13 51 3anbi123d u=UGdomuvB¬u<svusucG=vsucGuG=UGGdomUvB¬U<svUsucG=vsucGUG=UG
53 52 rspcev UBGdomUvB¬U<svUsucG=vsucGUG=UGuBGdomuvB¬u<svusucG=vsucGuG=UG
54 46 47 48 49 53 syl13anc UBGdomUvB¬U<svUsucG=vsucGuBGdomuvB¬u<svusucG=vsucGuG=UG
55 54 3ad2ant3 ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGuBGdomuvB¬u<svusucG=vsucGuG=UG
56 fvex UGV
57 eqid uG=uG
58 fvex uGV
59 eqeq2 x=uGuG=xuG=uG
60 59 3anbi3d x=uGGdomuvB¬u<svusucG=vsucGuG=xGdomuvB¬u<svusucG=vsucGuG=uG
61 58 60 spcev GdomuvB¬u<svusucG=vsucGuG=uGxGdomuvB¬u<svusucG=vsucGuG=x
62 57 61 mp3an3 GdomuvB¬u<svusucG=vsucGxGdomuvB¬u<svusucG=vsucGuG=x
63 62 reximi uBGdomuvB¬u<svusucG=vsucGuBxGdomuvB¬u<svusucG=vsucGuG=x
64 rexcom4 uBxGdomuvB¬u<svusucG=vsucGuG=xxuBGdomuvB¬u<svusucG=vsucGuG=x
65 63 64 sylib uBGdomuvB¬u<svusucG=vsucGxuBGdomuvB¬u<svusucG=vsucGuG=x
66 16 65 syl UBGdomUvB¬U<svUsucG=vsucGxuBGdomuvB¬u<svusucG=vsucGuG=x
67 66 3ad2ant3 ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGxuBGdomuvB¬u<svusucG=vsucGuG=x
68 simp2l ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGBNo
69 noinfprefixmo BNo*xuBGdomuvB¬u<svusucG=vsucGuG=x
70 68 69 syl ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucG*xuBGdomuvB¬u<svusucG=vsucGuG=x
71 df-eu ∃!xuBGdomuvB¬u<svusucG=vsucGuG=xxuBGdomuvB¬u<svusucG=vsucGuG=x*xuBGdomuvB¬u<svusucG=vsucGuG=x
72 67 70 71 sylanbrc ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucG∃!xuBGdomuvB¬u<svusucG=vsucGuG=x
73 eqeq2 x=UGuG=xuG=UG
74 73 3anbi3d x=UGGdomuvB¬u<svusucG=vsucGuG=xGdomuvB¬u<svusucG=vsucGuG=UG
75 74 rexbidv x=UGuBGdomuvB¬u<svusucG=vsucGuG=xuBGdomuvB¬u<svusucG=vsucGuG=UG
76 75 iota2 UGV∃!xuBGdomuvB¬u<svusucG=vsucGuG=xuBGdomuvB¬u<svusucG=vsucGuG=UGιx|uBGdomuvB¬u<svusucG=vsucGuG=x=UG
77 56 72 76 sylancr ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGuBGdomuvB¬u<svusucG=vsucGuG=UGιx|uBGdomuvB¬u<svusucG=vsucGuG=x=UG
78 55 77 mpbid ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGιx|uBGdomuvB¬u<svusucG=vsucGuG=x=UG
79 5 45 78 3eqtrd ¬xByB¬y<sxBNoBVUBGdomUvB¬U<svUsucG=vsucGTG=UG