Metamath Proof Explorer


Theorem noetainflem4

Description: Lemma for noeta . If A precedes B , then W is greater than A . (Contributed by Scott Fenton, 9-Aug-2024)

Ref Expression
Hypotheses noetainflem.1 T = if x B y B ¬ y < s x ι x B | y B ¬ y < s x dom ι x B | y B ¬ y < s x 1 𝑜 g y | u B y dom u v B ¬ u < s v u suc y = v suc y ι x | u B g dom u v B ¬ u < s v u suc g = v suc g u g = x
noetainflem.2 W = T suc bday A dom T × 2 𝑜
Assertion noetainflem4 A No A V B No B V a A b B a < s b a A a < s W

Proof

Step Hyp Ref Expression
1 noetainflem.1 T = if x B y B ¬ y < s x ι x B | y B ¬ y < s x dom ι x B | y B ¬ y < s x 1 𝑜 g y | u B y dom u v B ¬ u < s v u suc y = v suc y ι x | u B g dom u v B ¬ u < s v u suc g = v suc g u g = x
2 noetainflem.2 W = T suc bday A dom T × 2 𝑜
3 simplrl A No A V B No B V a A B No
4 simplrr A No A V B No B V a A B V
5 simpll A No A V B No B V A No
6 5 sselda A No A V B No B V a A a No
7 1 noinfbnd2 B No B V a No b B a < s b ¬ T < s a dom T
8 3 4 6 7 syl3anc A No A V B No B V a A b B a < s b ¬ T < s a dom T
9 simplll A No A V B No B V a A ¬ T < s a dom T A No
10 simprl A No A V B No B V a A ¬ T < s a dom T a A
11 9 10 sseldd A No A V B No B V a A ¬ T < s a dom T a No
12 nodmord a No Ord dom a
13 ordirr Ord dom a ¬ dom a dom a
14 11 12 13 3syl A No A V B No B V a A ¬ T < s a dom T ¬ dom a dom a
15 bdayval a No bday a = dom a
16 11 15 syl A No A V B No B V a A ¬ T < s a dom T bday a = dom a
17 bdayfo bday : No onto On
18 fofn bday : No onto On bday Fn No
19 17 18 ax-mp bday Fn No
20 fnfvima bday Fn No A No a A bday a bday A
21 19 9 10 20 mp3an2i A No A V B No B V a A ¬ T < s a dom T bday a bday A
22 16 21 eqeltrrd A No A V B No B V a A ¬ T < s a dom T dom a bday A
23 elssuni dom a bday A dom a bday A
24 22 23 syl A No A V B No B V a A ¬ T < s a dom T dom a bday A
25 nodmon a No dom a On
26 imassrn bday A ran bday
27 forn bday : No onto On ran bday = On
28 17 27 ax-mp ran bday = On
29 26 28 sseqtri bday A On
30 ssorduni bday A On Ord bday A
31 29 30 ax-mp Ord bday A
32 ordsssuc dom a On Ord bday A dom a bday A dom a suc bday A
33 31 32 mpan2 dom a On dom a bday A dom a suc bday A
34 11 25 33 3syl A No A V B No B V a A ¬ T < s a dom T dom a bday A dom a suc bday A
35 24 34 mpbid A No A V B No B V a A ¬ T < s a dom T dom a suc bday A
36 elun2 dom a suc bday A dom a dom T suc bday A
37 35 36 syl A No A V B No B V a A ¬ T < s a dom T dom a dom T suc bday A
38 eleq2 dom a = dom T suc bday A dom a dom a dom a dom T suc bday A
39 37 38 syl5ibrcom A No A V B No B V a A ¬ T < s a dom T dom a = dom T suc bday A dom a dom a
40 14 39 mtod A No A V B No B V a A ¬ T < s a dom T ¬ dom a = dom T suc bday A
41 dmeq a = W dom a = dom W
42 2 dmeqi dom W = dom T suc bday A dom T × 2 𝑜
43 dmun dom T suc bday A dom T × 2 𝑜 = dom T dom suc bday A dom T × 2 𝑜
44 2oex 2 𝑜 V
45 44 snnz 2 𝑜
46 dmxp 2 𝑜 dom suc bday A dom T × 2 𝑜 = suc bday A dom T
47 45 46 ax-mp dom suc bday A dom T × 2 𝑜 = suc bday A dom T
48 47 uneq2i dom T dom suc bday A dom T × 2 𝑜 = dom T suc bday A dom T
49 undif2 dom T suc bday A dom T = dom T suc bday A
50 48 49 eqtri dom T dom suc bday A dom T × 2 𝑜 = dom T suc bday A
51 42 43 50 3eqtri dom W = dom T suc bday A
52 41 51 eqtrdi a = W dom a = dom T suc bday A
53 40 52 nsyl A No A V B No B V a A ¬ T < s a dom T ¬ a = W
54 53 neqned A No A V B No B V a A ¬ T < s a dom T a W
55 simpr A No A V B No B V a A ¬ T < s a dom T a W p On | a p W p dom T p On | a p W p dom T
56 11 adantr A No A V B No B V a A ¬ T < s a dom T a W a No
57 56 adantr A No A V B No B V a A ¬ T < s a dom T a W p On | a p W p dom T a No
58 simp-4r A No A V B No B V a A ¬ T < s a dom T a W A V
59 simplrl A No A V B No B V a A ¬ T < s a dom T B No
60 59 adantr A No A V B No B V a A ¬ T < s a dom T a W B No
61 simplrr A No A V B No B V a A ¬ T < s a dom T B V
62 61 adantr A No A V B No B V a A ¬ T < s a dom T a W B V
63 1 2 noetainflem1 A V B No B V W No
64 58 60 62 63 syl3anc A No A V B No B V a A ¬ T < s a dom T a W W No
65 64 adantr A No A V B No B V a A ¬ T < s a dom T a W p On | a p W p dom T W No
66 simplr A No A V B No B V a A ¬ T < s a dom T a W p On | a p W p dom T a W
67 nosepne a No W No a W a p On | a p W p W p On | a p W p
68 57 65 66 67 syl3anc A No A V B No B V a A ¬ T < s a dom T a W p On | a p W p dom T a p On | a p W p W p On | a p W p
69 55 fvresd A No A V B No B V a A ¬ T < s a dom T a W p On | a p W p dom T W dom T p On | a p W p = W p On | a p W p
70 simp-4r A No A V B No B V a A ¬ T < s a dom T a W p On | a p W p dom T B No B V
71 1 2 noetainflem2 B No B V W dom T = T
72 70 71 syl A No A V B No B V a A ¬ T < s a dom T a W p On | a p W p dom T W dom T = T
73 72 fveq1d A No A V B No B V a A ¬ T < s a dom T a W p On | a p W p dom T W dom T p On | a p W p = T p On | a p W p
74 69 73 eqtr3d A No A V B No B V a A ¬ T < s a dom T a W p On | a p W p dom T W p On | a p W p = T p On | a p W p
75 68 74 neeqtrd A No A V B No B V a A ¬ T < s a dom T a W p On | a p W p dom T a p On | a p W p T p On | a p W p
76 75 necomd A No A V B No B V a A ¬ T < s a dom T a W p On | a p W p dom T T p On | a p W p a p On | a p W p
77 fveq2 q = p On | a p W p T q = T p On | a p W p
78 fveq2 q = p On | a p W p a q = a p On | a p W p
79 77 78 neeq12d q = p On | a p W p T q a q T p On | a p W p a p On | a p W p
80 79 rspcev p On | a p W p dom T T p On | a p W p a p On | a p W p q dom T T q a q
81 55 76 80 syl2anc A No A V B No B V a A ¬ T < s a dom T a W p On | a p W p dom T q dom T T q a q
82 df-ne T q a dom T q ¬ T q = a dom T q
83 fvres q dom T a dom T q = a q
84 83 neeq2d q dom T T q a dom T q T q a q
85 82 84 bitr3id q dom T ¬ T q = a dom T q T q a q
86 85 rexbiia q dom T ¬ T q = a dom T q q dom T T q a q
87 rexnal q dom T ¬ T q = a dom T q ¬ q dom T T q = a dom T q
88 86 87 bitr3i q dom T T q a q ¬ q dom T T q = a dom T q
89 81 88 sylib A No A V B No B V a A ¬ T < s a dom T a W p On | a p W p dom T ¬ q dom T T q = a dom T q
90 89 olcd A No A V B No B V a A ¬ T < s a dom T a W p On | a p W p dom T ¬ dom T = dom a dom T ¬ q dom T T q = a dom T q
91 1 noinfno B No B V T No
92 91 ad3antlr A No A V B No B V a A ¬ T < s a dom T a W T No
93 92 adantr A No A V B No B V a A ¬ T < s a dom T a W p On | a p W p dom T T No
94 nofun T No Fun T
95 93 94 syl A No A V B No B V a A ¬ T < s a dom T a W p On | a p W p dom T Fun T
96 nofun a No Fun a
97 funres Fun a Fun a dom T
98 57 96 97 3syl A No A V B No B V a A ¬ T < s a dom T a W p On | a p W p dom T Fun a dom T
99 eqfunfv Fun T Fun a dom T T = a dom T dom T = dom a dom T q dom T T q = a dom T q
100 95 98 99 syl2anc A No A V B No B V a A ¬ T < s a dom T a W p On | a p W p dom T T = a dom T dom T = dom a dom T q dom T T q = a dom T q
101 ianor ¬ dom T = dom a dom T q dom T T q = a dom T q ¬ dom T = dom a dom T ¬ q dom T T q = a dom T q
102 101 con1bii ¬ ¬ dom T = dom a dom T ¬ q dom T T q = a dom T q dom T = dom a dom T q dom T T q = a dom T q
103 100 102 bitr4di A No A V B No B V a A ¬ T < s a dom T a W p On | a p W p dom T T = a dom T ¬ ¬ dom T = dom a dom T ¬ q dom T T q = a dom T q
104 103 con2bid A No A V B No B V a A ¬ T < s a dom T a W p On | a p W p dom T ¬ dom T = dom a dom T ¬ q dom T T q = a dom T q ¬ T = a dom T
105 90 104 mpbid A No A V B No B V a A ¬ T < s a dom T a W p On | a p W p dom T ¬ T = a dom T
106 105 pm2.21d A No A V B No B V a A ¬ T < s a dom T a W p On | a p W p dom T T = a dom T a < s W
107 72 breq2d A No A V B No B V a A ¬ T < s a dom T a W p On | a p W p dom T a dom T < s W dom T a dom T < s T
108 nodmon T No dom T On
109 92 108 syl A No A V B No B V a A ¬ T < s a dom T a W dom T On
110 109 adantr A No A V B No B V a A ¬ T < s a dom T a W p On | a p W p dom T dom T On
111 sltres a No W No dom T On a dom T < s W dom T a < s W
112 57 65 110 111 syl3anc A No A V B No B V a A ¬ T < s a dom T a W p On | a p W p dom T a dom T < s W dom T a < s W
113 107 112 sylbird A No A V B No B V a A ¬ T < s a dom T a W p On | a p W p dom T a dom T < s T a < s W
114 simplrr A No A V B No B V a A ¬ T < s a dom T a W ¬ T < s a dom T
115 114 adantr A No A V B No B V a A ¬ T < s a dom T a W p On | a p W p dom T ¬ T < s a dom T
116 noreson a No dom T On a dom T No
117 56 109 116 syl2anc A No A V B No B V a A ¬ T < s a dom T a W a dom T No
118 117 adantr A No A V B No B V a A ¬ T < s a dom T a W p On | a p W p dom T a dom T No
119 sltso < s Or No
120 sotric < s Or No T No a dom T No T < s a dom T ¬ T = a dom T a dom T < s T
121 119 120 mpan T No a dom T No T < s a dom T ¬ T = a dom T a dom T < s T
122 93 118 121 syl2anc A No A V B No B V a A ¬ T < s a dom T a W p On | a p W p dom T T < s a dom T ¬ T = a dom T a dom T < s T
123 122 con2bid A No A V B No B V a A ¬ T < s a dom T a W p On | a p W p dom T T = a dom T a dom T < s T ¬ T < s a dom T
124 115 123 mpbird A No A V B No B V a A ¬ T < s a dom T a W p On | a p W p dom T T = a dom T a dom T < s T
125 106 113 124 mpjaod A No A V B No B V a A ¬ T < s a dom T a W p On | a p W p dom T a < s W
126 64 adantr A No A V B No B V a A ¬ T < s a dom T a W dom T p On | a p W p W No
127 56 adantr A No A V B No B V a A ¬ T < s a dom T a W dom T p On | a p W p a No
128 simplr A No A V B No B V a A ¬ T < s a dom T a W dom T p On | a p W p a W
129 128 necomd A No A V B No B V a A ¬ T < s a dom T a W dom T p On | a p W p W a
130 2 fveq1i W p On | a p W p = T suc bday A dom T × 2 𝑜 p On | a p W p
131 92 adantr A No A V B No B V a A ¬ T < s a dom T a W dom T p On | a p W p T No
132 131 94 syl A No A V B No B V a A ¬ T < s a dom T a W dom T p On | a p W p Fun T
133 132 funfnd A No A V B No B V a A ¬ T < s a dom T a W dom T p On | a p W p T Fn dom T
134 fnconstg 2 𝑜 V suc bday A dom T × 2 𝑜 Fn suc bday A dom T
135 44 134 ax-mp suc bday A dom T × 2 𝑜 Fn suc bday A dom T
136 135 a1i A No A V B No B V a A ¬ T < s a dom T a W dom T p On | a p W p suc bday A dom T × 2 𝑜 Fn suc bday A dom T
137 disjdif dom T suc bday A dom T =
138 137 a1i A No A V B No B V a A ¬ T < s a dom T a W dom T p On | a p W p dom T suc bday A dom T =
139 nosepssdm a No W No a W p On | a p W p dom a
140 127 126 128 139 syl3anc A No A V B No B V a A ¬ T < s a dom T a W dom T p On | a p W p p On | a p W p dom a
141 127 15 syl A No A V B No B V a A ¬ T < s a dom T a W dom T p On | a p W p bday a = dom a
142 simp-5l A No A V B No B V a A ¬ T < s a dom T a W dom T p On | a p W p A No
143 simplrl A No A V B No B V a A ¬ T < s a dom T a W a A
144 143 adantr A No A V B No B V a A ¬ T < s a dom T a W dom T p On | a p W p a A
145 19 142 144 20 mp3an2i A No A V B No B V a A ¬ T < s a dom T a W dom T p On | a p W p bday a bday A
146 elssuni bday a bday A bday a bday A
147 145 146 syl A No A V B No B V a A ¬ T < s a dom T a W dom T p On | a p W p bday a bday A
148 141 147 eqsstrrd A No A V B No B V a A ¬ T < s a dom T a W dom T p On | a p W p dom a bday A
149 127 25 33 3syl A No A V B No B V a A ¬ T < s a dom T a W dom T p On | a p W p dom a bday A dom a suc bday A
150 148 149 mpbid A No A V B No B V a A ¬ T < s a dom T a W dom T p On | a p W p dom a suc bday A
151 simpr A No A V B No B V a A ¬ T < s a dom T a W a W
152 nosepon a No W No a W p On | a p W p On
153 56 64 151 152 syl3anc A No A V B No B V a A ¬ T < s a dom T a W p On | a p W p On
154 153 adantr A No A V B No B V a A ¬ T < s a dom T a W dom T p On | a p W p p On | a p W p On
155 eloni p On | a p W p On Ord p On | a p W p
156 ordsuc Ord bday A Ord suc bday A
157 31 156 mpbi Ord suc bday A
158 ordtr2 Ord p On | a p W p Ord suc bday A p On | a p W p dom a dom a suc bday A p On | a p W p suc bday A
159 157 158 mpan2 Ord p On | a p W p p On | a p W p dom a dom a suc bday A p On | a p W p suc bday A
160 154 155 159 3syl A No A V B No B V a A ¬ T < s a dom T a W dom T p On | a p W p p On | a p W p dom a dom a suc bday A p On | a p W p suc bday A
161 140 150 160 mp2and A No A V B No B V a A ¬ T < s a dom T a W dom T p On | a p W p p On | a p W p suc bday A
162 ontri1 dom T On p On | a p W p On dom T p On | a p W p ¬ p On | a p W p dom T
163 109 153 162 syl2anc A No A V B No B V a A ¬ T < s a dom T a W dom T p On | a p W p ¬ p On | a p W p dom T
164 163 biimpa A No A V B No B V a A ¬ T < s a dom T a W dom T p On | a p W p ¬ p On | a p W p dom T
165 161 164 eldifd A No A V B No B V a A ¬ T < s a dom T a W dom T p On | a p W p p On | a p W p suc bday A dom T
166 133 136 138 165 fvun2d A No A V B No B V a A ¬ T < s a dom T a W dom T p On | a p W p T suc bday A dom T × 2 𝑜 p On | a p W p = suc bday A dom T × 2 𝑜 p On | a p W p
167 44 fvconst2 p On | a p W p suc bday A dom T suc bday A dom T × 2 𝑜 p On | a p W p = 2 𝑜
168 165 167 syl A No A V B No B V a A ¬ T < s a dom T a W dom T p On | a p W p suc bday A dom T × 2 𝑜 p On | a p W p = 2 𝑜
169 166 168 eqtrd A No A V B No B V a A ¬ T < s a dom T a W dom T p On | a p W p T suc bday A dom T × 2 𝑜 p On | a p W p = 2 𝑜
170 130 169 eqtrid A No A V B No B V a A ¬ T < s a dom T a W dom T p On | a p W p W p On | a p W p = 2 𝑜
171 nosep2o W No a No W a W p On | a p W p = 2 𝑜 a < s W
172 126 127 129 170 171 syl31anc A No A V B No B V a A ¬ T < s a dom T a W dom T p On | a p W p a < s W
173 153 155 syl A No A V B No B V a A ¬ T < s a dom T a W Ord p On | a p W p
174 nodmord T No Ord dom T
175 92 174 syl A No A V B No B V a A ¬ T < s a dom T a W Ord dom T
176 ordtri2or Ord p On | a p W p Ord dom T p On | a p W p dom T dom T p On | a p W p
177 173 175 176 syl2anc A No A V B No B V a A ¬ T < s a dom T a W p On | a p W p dom T dom T p On | a p W p
178 125 172 177 mpjaodan A No A V B No B V a A ¬ T < s a dom T a W a < s W
179 54 178 mpdan A No A V B No B V a A ¬ T < s a dom T a < s W
180 179 expr A No A V B No B V a A ¬ T < s a dom T a < s W
181 8 180 sylbid A No A V B No B V a A b B a < s b a < s W
182 181 ralimdva A No A V B No B V a A b B a < s b a A a < s W
183 182 3impia A No A V B No B V a A b B a < s b a A a < s W