Metamath Proof Explorer


Theorem fvun2d

Description: The value of a union when the argument is in the second domain, a deduction version. (Contributed by metakunt, 28-May-2024)

Ref Expression
Hypotheses fvun2d.1 φFFnA
fvun2d.2 φGFnB
fvun2d.3 φAB=
fvun2d.4 φXB
Assertion fvun2d φFGX=GX

Proof

Step Hyp Ref Expression
1 fvun2d.1 φFFnA
2 fvun2d.2 φGFnB
3 fvun2d.3 φAB=
4 fvun2d.4 φXB
5 3 4 jca φAB=XB
6 1 2 5 3jca φFFnAGFnBAB=XB
7 fvun2 FFnAGFnBAB=XBFGX=GX
8 6 7 syl φFGX=GX