| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nosupcbv.1 |
⊢ 𝑆 = if ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 , ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
| 2 |
|
breq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 <s 𝑦 ↔ 𝑎 <s 𝑦 ) ) |
| 3 |
2
|
notbid |
⊢ ( 𝑥 = 𝑎 → ( ¬ 𝑥 <s 𝑦 ↔ ¬ 𝑎 <s 𝑦 ) ) |
| 4 |
3
|
ralbidv |
⊢ ( 𝑥 = 𝑎 → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑎 <s 𝑦 ) ) |
| 5 |
|
breq2 |
⊢ ( 𝑦 = 𝑏 → ( 𝑎 <s 𝑦 ↔ 𝑎 <s 𝑏 ) ) |
| 6 |
5
|
notbid |
⊢ ( 𝑦 = 𝑏 → ( ¬ 𝑎 <s 𝑦 ↔ ¬ 𝑎 <s 𝑏 ) ) |
| 7 |
6
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑎 <s 𝑦 ↔ ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏 ) |
| 8 |
4 7
|
bitrdi |
⊢ ( 𝑥 = 𝑎 → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ↔ ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏 ) ) |
| 9 |
8
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ↔ ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏 ) |
| 10 |
8
|
cbvriotavw |
⊢ ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) = ( ℩ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏 ) |
| 11 |
10
|
dmeqi |
⊢ dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) = dom ( ℩ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏 ) |
| 12 |
11
|
opeq1i |
⊢ 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 = 〈 dom ( ℩ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏 ) , 2o 〉 |
| 13 |
12
|
sneqi |
⊢ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } = { 〈 dom ( ℩ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏 ) , 2o 〉 } |
| 14 |
10 13
|
uneq12i |
⊢ ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) = ( ( ℩ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏 ) ∪ { 〈 dom ( ℩ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏 ) , 2o 〉 } ) |
| 15 |
|
eleq1w |
⊢ ( 𝑔 = 𝑐 → ( 𝑔 ∈ dom 𝑢 ↔ 𝑐 ∈ dom 𝑢 ) ) |
| 16 |
|
suceq |
⊢ ( 𝑔 = 𝑐 → suc 𝑔 = suc 𝑐 ) |
| 17 |
16
|
reseq2d |
⊢ ( 𝑔 = 𝑐 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑢 ↾ suc 𝑐 ) ) |
| 18 |
16
|
reseq2d |
⊢ ( 𝑔 = 𝑐 → ( 𝑣 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑐 ) ) |
| 19 |
17 18
|
eqeq12d |
⊢ ( 𝑔 = 𝑐 → ( ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ↔ ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ) |
| 20 |
19
|
imbi2d |
⊢ ( 𝑔 = 𝑐 → ( ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ↔ ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ) ) |
| 21 |
20
|
ralbidv |
⊢ ( 𝑔 = 𝑐 → ( ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ↔ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ) ) |
| 22 |
|
fveqeq2 |
⊢ ( 𝑔 = 𝑐 → ( ( 𝑢 ‘ 𝑔 ) = 𝑥 ↔ ( 𝑢 ‘ 𝑐 ) = 𝑥 ) ) |
| 23 |
15 21 22
|
3anbi123d |
⊢ ( 𝑔 = 𝑐 → ( ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ↔ ( 𝑐 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ∧ ( 𝑢 ‘ 𝑐 ) = 𝑥 ) ) ) |
| 24 |
23
|
rexbidv |
⊢ ( 𝑔 = 𝑐 → ( ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ↔ ∃ 𝑢 ∈ 𝐴 ( 𝑐 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ∧ ( 𝑢 ‘ 𝑐 ) = 𝑥 ) ) ) |
| 25 |
24
|
iotabidv |
⊢ ( 𝑔 = 𝑐 → ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) = ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑐 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ∧ ( 𝑢 ‘ 𝑐 ) = 𝑥 ) ) ) |
| 26 |
|
eqeq2 |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑢 ‘ 𝑐 ) = 𝑥 ↔ ( 𝑢 ‘ 𝑐 ) = 𝑎 ) ) |
| 27 |
26
|
3anbi3d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑐 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ∧ ( 𝑢 ‘ 𝑐 ) = 𝑥 ) ↔ ( 𝑐 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ∧ ( 𝑢 ‘ 𝑐 ) = 𝑎 ) ) ) |
| 28 |
27
|
rexbidv |
⊢ ( 𝑥 = 𝑎 → ( ∃ 𝑢 ∈ 𝐴 ( 𝑐 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ∧ ( 𝑢 ‘ 𝑐 ) = 𝑥 ) ↔ ∃ 𝑢 ∈ 𝐴 ( 𝑐 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ∧ ( 𝑢 ‘ 𝑐 ) = 𝑎 ) ) ) |
| 29 |
|
dmeq |
⊢ ( 𝑢 = 𝑒 → dom 𝑢 = dom 𝑒 ) |
| 30 |
29
|
eleq2d |
⊢ ( 𝑢 = 𝑒 → ( 𝑐 ∈ dom 𝑢 ↔ 𝑐 ∈ dom 𝑒 ) ) |
| 31 |
|
breq2 |
⊢ ( 𝑢 = 𝑒 → ( 𝑣 <s 𝑢 ↔ 𝑣 <s 𝑒 ) ) |
| 32 |
31
|
notbid |
⊢ ( 𝑢 = 𝑒 → ( ¬ 𝑣 <s 𝑢 ↔ ¬ 𝑣 <s 𝑒 ) ) |
| 33 |
|
reseq1 |
⊢ ( 𝑢 = 𝑒 → ( 𝑢 ↾ suc 𝑐 ) = ( 𝑒 ↾ suc 𝑐 ) ) |
| 34 |
33
|
eqeq1d |
⊢ ( 𝑢 = 𝑒 → ( ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ↔ ( 𝑒 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ) |
| 35 |
32 34
|
imbi12d |
⊢ ( 𝑢 = 𝑒 → ( ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ↔ ( ¬ 𝑣 <s 𝑒 → ( 𝑒 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ) ) |
| 36 |
35
|
ralbidv |
⊢ ( 𝑢 = 𝑒 → ( ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ↔ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑒 → ( 𝑒 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ) ) |
| 37 |
|
breq1 |
⊢ ( 𝑣 = 𝑓 → ( 𝑣 <s 𝑒 ↔ 𝑓 <s 𝑒 ) ) |
| 38 |
37
|
notbid |
⊢ ( 𝑣 = 𝑓 → ( ¬ 𝑣 <s 𝑒 ↔ ¬ 𝑓 <s 𝑒 ) ) |
| 39 |
|
reseq1 |
⊢ ( 𝑣 = 𝑓 → ( 𝑣 ↾ suc 𝑐 ) = ( 𝑓 ↾ suc 𝑐 ) ) |
| 40 |
39
|
eqeq2d |
⊢ ( 𝑣 = 𝑓 → ( ( 𝑒 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ↔ ( 𝑒 ↾ suc 𝑐 ) = ( 𝑓 ↾ suc 𝑐 ) ) ) |
| 41 |
38 40
|
imbi12d |
⊢ ( 𝑣 = 𝑓 → ( ( ¬ 𝑣 <s 𝑒 → ( 𝑒 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ↔ ( ¬ 𝑓 <s 𝑒 → ( 𝑒 ↾ suc 𝑐 ) = ( 𝑓 ↾ suc 𝑐 ) ) ) ) |
| 42 |
41
|
cbvralvw |
⊢ ( ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑒 → ( 𝑒 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ↔ ∀ 𝑓 ∈ 𝐴 ( ¬ 𝑓 <s 𝑒 → ( 𝑒 ↾ suc 𝑐 ) = ( 𝑓 ↾ suc 𝑐 ) ) ) |
| 43 |
36 42
|
bitrdi |
⊢ ( 𝑢 = 𝑒 → ( ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ↔ ∀ 𝑓 ∈ 𝐴 ( ¬ 𝑓 <s 𝑒 → ( 𝑒 ↾ suc 𝑐 ) = ( 𝑓 ↾ suc 𝑐 ) ) ) ) |
| 44 |
|
fveq1 |
⊢ ( 𝑢 = 𝑒 → ( 𝑢 ‘ 𝑐 ) = ( 𝑒 ‘ 𝑐 ) ) |
| 45 |
44
|
eqeq1d |
⊢ ( 𝑢 = 𝑒 → ( ( 𝑢 ‘ 𝑐 ) = 𝑎 ↔ ( 𝑒 ‘ 𝑐 ) = 𝑎 ) ) |
| 46 |
30 43 45
|
3anbi123d |
⊢ ( 𝑢 = 𝑒 → ( ( 𝑐 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ∧ ( 𝑢 ‘ 𝑐 ) = 𝑎 ) ↔ ( 𝑐 ∈ dom 𝑒 ∧ ∀ 𝑓 ∈ 𝐴 ( ¬ 𝑓 <s 𝑒 → ( 𝑒 ↾ suc 𝑐 ) = ( 𝑓 ↾ suc 𝑐 ) ) ∧ ( 𝑒 ‘ 𝑐 ) = 𝑎 ) ) ) |
| 47 |
46
|
cbvrexvw |
⊢ ( ∃ 𝑢 ∈ 𝐴 ( 𝑐 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ∧ ( 𝑢 ‘ 𝑐 ) = 𝑎 ) ↔ ∃ 𝑒 ∈ 𝐴 ( 𝑐 ∈ dom 𝑒 ∧ ∀ 𝑓 ∈ 𝐴 ( ¬ 𝑓 <s 𝑒 → ( 𝑒 ↾ suc 𝑐 ) = ( 𝑓 ↾ suc 𝑐 ) ) ∧ ( 𝑒 ‘ 𝑐 ) = 𝑎 ) ) |
| 48 |
28 47
|
bitrdi |
⊢ ( 𝑥 = 𝑎 → ( ∃ 𝑢 ∈ 𝐴 ( 𝑐 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ∧ ( 𝑢 ‘ 𝑐 ) = 𝑥 ) ↔ ∃ 𝑒 ∈ 𝐴 ( 𝑐 ∈ dom 𝑒 ∧ ∀ 𝑓 ∈ 𝐴 ( ¬ 𝑓 <s 𝑒 → ( 𝑒 ↾ suc 𝑐 ) = ( 𝑓 ↾ suc 𝑐 ) ) ∧ ( 𝑒 ‘ 𝑐 ) = 𝑎 ) ) ) |
| 49 |
48
|
cbviotavw |
⊢ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑐 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ∧ ( 𝑢 ‘ 𝑐 ) = 𝑥 ) ) = ( ℩ 𝑎 ∃ 𝑒 ∈ 𝐴 ( 𝑐 ∈ dom 𝑒 ∧ ∀ 𝑓 ∈ 𝐴 ( ¬ 𝑓 <s 𝑒 → ( 𝑒 ↾ suc 𝑐 ) = ( 𝑓 ↾ suc 𝑐 ) ) ∧ ( 𝑒 ‘ 𝑐 ) = 𝑎 ) ) |
| 50 |
25 49
|
eqtrdi |
⊢ ( 𝑔 = 𝑐 → ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) = ( ℩ 𝑎 ∃ 𝑒 ∈ 𝐴 ( 𝑐 ∈ dom 𝑒 ∧ ∀ 𝑓 ∈ 𝐴 ( ¬ 𝑓 <s 𝑒 → ( 𝑒 ↾ suc 𝑐 ) = ( 𝑓 ↾ suc 𝑐 ) ) ∧ ( 𝑒 ‘ 𝑐 ) = 𝑎 ) ) ) |
| 51 |
50
|
cbvmptv |
⊢ ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) = ( 𝑐 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑎 ∃ 𝑒 ∈ 𝐴 ( 𝑐 ∈ dom 𝑒 ∧ ∀ 𝑓 ∈ 𝐴 ( ¬ 𝑓 <s 𝑒 → ( 𝑒 ↾ suc 𝑐 ) = ( 𝑓 ↾ suc 𝑐 ) ) ∧ ( 𝑒 ‘ 𝑐 ) = 𝑎 ) ) ) |
| 52 |
|
eleq1w |
⊢ ( 𝑦 = 𝑑 → ( 𝑦 ∈ dom 𝑢 ↔ 𝑑 ∈ dom 𝑢 ) ) |
| 53 |
|
suceq |
⊢ ( 𝑦 = 𝑑 → suc 𝑦 = suc 𝑑 ) |
| 54 |
53
|
reseq2d |
⊢ ( 𝑦 = 𝑑 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑢 ↾ suc 𝑑 ) ) |
| 55 |
53
|
reseq2d |
⊢ ( 𝑦 = 𝑑 → ( 𝑣 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑑 ) ) |
| 56 |
54 55
|
eqeq12d |
⊢ ( 𝑦 = 𝑑 → ( ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ↔ ( 𝑢 ↾ suc 𝑑 ) = ( 𝑣 ↾ suc 𝑑 ) ) ) |
| 57 |
56
|
imbi2d |
⊢ ( 𝑦 = 𝑑 → ( ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ↔ ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑑 ) = ( 𝑣 ↾ suc 𝑑 ) ) ) ) |
| 58 |
57
|
ralbidv |
⊢ ( 𝑦 = 𝑑 → ( ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ↔ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑑 ) = ( 𝑣 ↾ suc 𝑑 ) ) ) ) |
| 59 |
52 58
|
anbi12d |
⊢ ( 𝑦 = 𝑑 → ( ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) ↔ ( 𝑑 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑑 ) = ( 𝑣 ↾ suc 𝑑 ) ) ) ) ) |
| 60 |
59
|
rexbidv |
⊢ ( 𝑦 = 𝑑 → ( ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) ↔ ∃ 𝑢 ∈ 𝐴 ( 𝑑 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑑 ) = ( 𝑣 ↾ suc 𝑑 ) ) ) ) ) |
| 61 |
29
|
eleq2d |
⊢ ( 𝑢 = 𝑒 → ( 𝑑 ∈ dom 𝑢 ↔ 𝑑 ∈ dom 𝑒 ) ) |
| 62 |
|
reseq1 |
⊢ ( 𝑢 = 𝑒 → ( 𝑢 ↾ suc 𝑑 ) = ( 𝑒 ↾ suc 𝑑 ) ) |
| 63 |
62
|
eqeq1d |
⊢ ( 𝑢 = 𝑒 → ( ( 𝑢 ↾ suc 𝑑 ) = ( 𝑣 ↾ suc 𝑑 ) ↔ ( 𝑒 ↾ suc 𝑑 ) = ( 𝑣 ↾ suc 𝑑 ) ) ) |
| 64 |
32 63
|
imbi12d |
⊢ ( 𝑢 = 𝑒 → ( ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑑 ) = ( 𝑣 ↾ suc 𝑑 ) ) ↔ ( ¬ 𝑣 <s 𝑒 → ( 𝑒 ↾ suc 𝑑 ) = ( 𝑣 ↾ suc 𝑑 ) ) ) ) |
| 65 |
64
|
ralbidv |
⊢ ( 𝑢 = 𝑒 → ( ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑑 ) = ( 𝑣 ↾ suc 𝑑 ) ) ↔ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑒 → ( 𝑒 ↾ suc 𝑑 ) = ( 𝑣 ↾ suc 𝑑 ) ) ) ) |
| 66 |
|
reseq1 |
⊢ ( 𝑣 = 𝑓 → ( 𝑣 ↾ suc 𝑑 ) = ( 𝑓 ↾ suc 𝑑 ) ) |
| 67 |
66
|
eqeq2d |
⊢ ( 𝑣 = 𝑓 → ( ( 𝑒 ↾ suc 𝑑 ) = ( 𝑣 ↾ suc 𝑑 ) ↔ ( 𝑒 ↾ suc 𝑑 ) = ( 𝑓 ↾ suc 𝑑 ) ) ) |
| 68 |
38 67
|
imbi12d |
⊢ ( 𝑣 = 𝑓 → ( ( ¬ 𝑣 <s 𝑒 → ( 𝑒 ↾ suc 𝑑 ) = ( 𝑣 ↾ suc 𝑑 ) ) ↔ ( ¬ 𝑓 <s 𝑒 → ( 𝑒 ↾ suc 𝑑 ) = ( 𝑓 ↾ suc 𝑑 ) ) ) ) |
| 69 |
68
|
cbvralvw |
⊢ ( ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑒 → ( 𝑒 ↾ suc 𝑑 ) = ( 𝑣 ↾ suc 𝑑 ) ) ↔ ∀ 𝑓 ∈ 𝐴 ( ¬ 𝑓 <s 𝑒 → ( 𝑒 ↾ suc 𝑑 ) = ( 𝑓 ↾ suc 𝑑 ) ) ) |
| 70 |
65 69
|
bitrdi |
⊢ ( 𝑢 = 𝑒 → ( ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑑 ) = ( 𝑣 ↾ suc 𝑑 ) ) ↔ ∀ 𝑓 ∈ 𝐴 ( ¬ 𝑓 <s 𝑒 → ( 𝑒 ↾ suc 𝑑 ) = ( 𝑓 ↾ suc 𝑑 ) ) ) ) |
| 71 |
61 70
|
anbi12d |
⊢ ( 𝑢 = 𝑒 → ( ( 𝑑 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑑 ) = ( 𝑣 ↾ suc 𝑑 ) ) ) ↔ ( 𝑑 ∈ dom 𝑒 ∧ ∀ 𝑓 ∈ 𝐴 ( ¬ 𝑓 <s 𝑒 → ( 𝑒 ↾ suc 𝑑 ) = ( 𝑓 ↾ suc 𝑑 ) ) ) ) ) |
| 72 |
71
|
cbvrexvw |
⊢ ( ∃ 𝑢 ∈ 𝐴 ( 𝑑 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑑 ) = ( 𝑣 ↾ suc 𝑑 ) ) ) ↔ ∃ 𝑒 ∈ 𝐴 ( 𝑑 ∈ dom 𝑒 ∧ ∀ 𝑓 ∈ 𝐴 ( ¬ 𝑓 <s 𝑒 → ( 𝑒 ↾ suc 𝑑 ) = ( 𝑓 ↾ suc 𝑑 ) ) ) ) |
| 73 |
60 72
|
bitrdi |
⊢ ( 𝑦 = 𝑑 → ( ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) ↔ ∃ 𝑒 ∈ 𝐴 ( 𝑑 ∈ dom 𝑒 ∧ ∀ 𝑓 ∈ 𝐴 ( ¬ 𝑓 <s 𝑒 → ( 𝑒 ↾ suc 𝑑 ) = ( 𝑓 ↾ suc 𝑑 ) ) ) ) ) |
| 74 |
73
|
cbvabv |
⊢ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } = { 𝑑 ∣ ∃ 𝑒 ∈ 𝐴 ( 𝑑 ∈ dom 𝑒 ∧ ∀ 𝑓 ∈ 𝐴 ( ¬ 𝑓 <s 𝑒 → ( 𝑒 ↾ suc 𝑑 ) = ( 𝑓 ↾ suc 𝑑 ) ) ) } |
| 75 |
74
|
mpteq1i |
⊢ ( 𝑐 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑎 ∃ 𝑒 ∈ 𝐴 ( 𝑐 ∈ dom 𝑒 ∧ ∀ 𝑓 ∈ 𝐴 ( ¬ 𝑓 <s 𝑒 → ( 𝑒 ↾ suc 𝑐 ) = ( 𝑓 ↾ suc 𝑐 ) ) ∧ ( 𝑒 ‘ 𝑐 ) = 𝑎 ) ) ) = ( 𝑐 ∈ { 𝑑 ∣ ∃ 𝑒 ∈ 𝐴 ( 𝑑 ∈ dom 𝑒 ∧ ∀ 𝑓 ∈ 𝐴 ( ¬ 𝑓 <s 𝑒 → ( 𝑒 ↾ suc 𝑑 ) = ( 𝑓 ↾ suc 𝑑 ) ) ) } ↦ ( ℩ 𝑎 ∃ 𝑒 ∈ 𝐴 ( 𝑐 ∈ dom 𝑒 ∧ ∀ 𝑓 ∈ 𝐴 ( ¬ 𝑓 <s 𝑒 → ( 𝑒 ↾ suc 𝑐 ) = ( 𝑓 ↾ suc 𝑐 ) ) ∧ ( 𝑒 ‘ 𝑐 ) = 𝑎 ) ) ) |
| 76 |
51 75
|
eqtri |
⊢ ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) = ( 𝑐 ∈ { 𝑑 ∣ ∃ 𝑒 ∈ 𝐴 ( 𝑑 ∈ dom 𝑒 ∧ ∀ 𝑓 ∈ 𝐴 ( ¬ 𝑓 <s 𝑒 → ( 𝑒 ↾ suc 𝑑 ) = ( 𝑓 ↾ suc 𝑑 ) ) ) } ↦ ( ℩ 𝑎 ∃ 𝑒 ∈ 𝐴 ( 𝑐 ∈ dom 𝑒 ∧ ∀ 𝑓 ∈ 𝐴 ( ¬ 𝑓 <s 𝑒 → ( 𝑒 ↾ suc 𝑐 ) = ( 𝑓 ↾ suc 𝑐 ) ) ∧ ( 𝑒 ‘ 𝑐 ) = 𝑎 ) ) ) |
| 77 |
9 14 76
|
ifbieq12i |
⊢ if ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 , ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) = if ( ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏 , ( ( ℩ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏 ) ∪ { 〈 dom ( ℩ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏 ) , 2o 〉 } ) , ( 𝑐 ∈ { 𝑑 ∣ ∃ 𝑒 ∈ 𝐴 ( 𝑑 ∈ dom 𝑒 ∧ ∀ 𝑓 ∈ 𝐴 ( ¬ 𝑓 <s 𝑒 → ( 𝑒 ↾ suc 𝑑 ) = ( 𝑓 ↾ suc 𝑑 ) ) ) } ↦ ( ℩ 𝑎 ∃ 𝑒 ∈ 𝐴 ( 𝑐 ∈ dom 𝑒 ∧ ∀ 𝑓 ∈ 𝐴 ( ¬ 𝑓 <s 𝑒 → ( 𝑒 ↾ suc 𝑐 ) = ( 𝑓 ↾ suc 𝑐 ) ) ∧ ( 𝑒 ‘ 𝑐 ) = 𝑎 ) ) ) ) |
| 78 |
1 77
|
eqtri |
⊢ 𝑆 = if ( ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏 , ( ( ℩ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏 ) ∪ { 〈 dom ( ℩ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏 ) , 2o 〉 } ) , ( 𝑐 ∈ { 𝑑 ∣ ∃ 𝑒 ∈ 𝐴 ( 𝑑 ∈ dom 𝑒 ∧ ∀ 𝑓 ∈ 𝐴 ( ¬ 𝑓 <s 𝑒 → ( 𝑒 ↾ suc 𝑑 ) = ( 𝑓 ↾ suc 𝑑 ) ) ) } ↦ ( ℩ 𝑎 ∃ 𝑒 ∈ 𝐴 ( 𝑐 ∈ dom 𝑒 ∧ ∀ 𝑓 ∈ 𝐴 ( ¬ 𝑓 <s 𝑒 → ( 𝑒 ↾ suc 𝑐 ) = ( 𝑓 ↾ suc 𝑐 ) ) ∧ ( 𝑒 ‘ 𝑐 ) = 𝑎 ) ) ) ) |