Metamath Proof Explorer


Theorem nosupcbv

Description: Lemma to change bound variables in a surreal supremum. (Contributed by Scott Fenton, 9-Aug-2024)

Ref Expression
Hypothesis nosupcbv.1 S = if x A y A ¬ x < s y ι x A | y A ¬ x < s y dom ι x A | y A ¬ x < s y 2 𝑜 g y | u A y dom u v A ¬ v < s u u suc y = v suc y ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x
Assertion nosupcbv S = if a A b A ¬ a < s b ι a A | b A ¬ a < s b dom ι a A | b A ¬ a < s b 2 𝑜 c d | e A d dom e f A ¬ f < s e e suc d = f suc d ι a | e A c dom e f A ¬ f < s e e suc c = f suc c e c = a

Proof

Step Hyp Ref Expression
1 nosupcbv.1 S = if x A y A ¬ x < s y ι x A | y A ¬ x < s y dom ι x A | y A ¬ x < s y 2 𝑜 g y | u A y dom u v A ¬ v < s u u suc y = v suc y ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x
2 breq1 x = a x < s y a < s y
3 2 notbid x = a ¬ x < s y ¬ a < s y
4 3 ralbidv x = a y A ¬ x < s y y A ¬ a < s y
5 breq2 y = b a < s y a < s b
6 5 notbid y = b ¬ a < s y ¬ a < s b
7 6 cbvralvw y A ¬ a < s y b A ¬ a < s b
8 4 7 bitrdi x = a y A ¬ x < s y b A ¬ a < s b
9 8 cbvrexvw x A y A ¬ x < s y a A b A ¬ a < s b
10 8 cbvriotavw ι x A | y A ¬ x < s y = ι a A | b A ¬ a < s b
11 10 dmeqi dom ι x A | y A ¬ x < s y = dom ι a A | b A ¬ a < s b
12 11 opeq1i dom ι x A | y A ¬ x < s y 2 𝑜 = dom ι a A | b A ¬ a < s b 2 𝑜
13 12 sneqi dom ι x A | y A ¬ x < s y 2 𝑜 = dom ι a A | b A ¬ a < s b 2 𝑜
14 10 13 uneq12i ι x A | y A ¬ x < s y dom ι x A | y A ¬ x < s y 2 𝑜 = ι a A | b A ¬ a < s b dom ι a A | b A ¬ a < s b 2 𝑜
15 eleq1w g = c g dom u c dom u
16 suceq g = c suc g = suc c
17 16 reseq2d g = c u suc g = u suc c
18 16 reseq2d g = c v suc g = v suc c
19 17 18 eqeq12d g = c u suc g = v suc g u suc c = v suc c
20 19 imbi2d g = c ¬ v < s u u suc g = v suc g ¬ v < s u u suc c = v suc c
21 20 ralbidv g = c v A ¬ v < s u u suc g = v suc g v A ¬ v < s u u suc c = v suc c
22 fveqeq2 g = c u g = x u c = x
23 15 21 22 3anbi123d g = c g dom u v A ¬ v < s u u suc g = v suc g u g = x c dom u v A ¬ v < s u u suc c = v suc c u c = x
24 23 rexbidv g = c u A g dom u v A ¬ v < s u u suc g = v suc g u g = x u A c dom u v A ¬ v < s u u suc c = v suc c u c = x
25 24 iotabidv g = c ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x = ι x | u A c dom u v A ¬ v < s u u suc c = v suc c u c = x
26 eqeq2 x = a u c = x u c = a
27 26 3anbi3d x = a c dom u v A ¬ v < s u u suc c = v suc c u c = x c dom u v A ¬ v < s u u suc c = v suc c u c = a
28 27 rexbidv x = a u A c dom u v A ¬ v < s u u suc c = v suc c u c = x u A c dom u v A ¬ v < s u u suc c = v suc c u c = a
29 dmeq u = e dom u = dom e
30 29 eleq2d u = e c dom u c dom e
31 breq2 u = e v < s u v < s e
32 31 notbid u = e ¬ v < s u ¬ v < s e
33 reseq1 u = e u suc c = e suc c
34 33 eqeq1d u = e u suc c = v suc c e suc c = v suc c
35 32 34 imbi12d u = e ¬ v < s u u suc c = v suc c ¬ v < s e e suc c = v suc c
36 35 ralbidv u = e v A ¬ v < s u u suc c = v suc c v A ¬ v < s e e suc c = v suc c
37 breq1 v = f v < s e f < s e
38 37 notbid v = f ¬ v < s e ¬ f < s e
39 reseq1 v = f v suc c = f suc c
40 39 eqeq2d v = f e suc c = v suc c e suc c = f suc c
41 38 40 imbi12d v = f ¬ v < s e e suc c = v suc c ¬ f < s e e suc c = f suc c
42 41 cbvralvw v A ¬ v < s e e suc c = v suc c f A ¬ f < s e e suc c = f suc c
43 36 42 bitrdi u = e v A ¬ v < s u u suc c = v suc c f A ¬ f < s e e suc c = f suc c
44 fveq1 u = e u c = e c
45 44 eqeq1d u = e u c = a e c = a
46 30 43 45 3anbi123d u = e c dom u v A ¬ v < s u u suc c = v suc c u c = a c dom e f A ¬ f < s e e suc c = f suc c e c = a
47 46 cbvrexvw u A c dom u v A ¬ v < s u u suc c = v suc c u c = a e A c dom e f A ¬ f < s e e suc c = f suc c e c = a
48 28 47 bitrdi x = a u A c dom u v A ¬ v < s u u suc c = v suc c u c = x e A c dom e f A ¬ f < s e e suc c = f suc c e c = a
49 48 cbviotavw ι x | u A c dom u v A ¬ v < s u u suc c = v suc c u c = x = ι a | e A c dom e f A ¬ f < s e e suc c = f suc c e c = a
50 25 49 eqtrdi g = c ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x = ι a | e A c dom e f A ¬ f < s e e suc c = f suc c e c = a
51 50 cbvmptv g y | u A y dom u v A ¬ v < s u u suc y = v suc y ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x = c y | u A y dom u v A ¬ v < s u u suc y = v suc y ι a | e A c dom e f A ¬ f < s e e suc c = f suc c e c = a
52 eleq1w y = d y dom u d dom u
53 suceq y = d suc y = suc d
54 53 reseq2d y = d u suc y = u suc d
55 53 reseq2d y = d v suc y = v suc d
56 54 55 eqeq12d y = d u suc y = v suc y u suc d = v suc d
57 56 imbi2d y = d ¬ v < s u u suc y = v suc y ¬ v < s u u suc d = v suc d
58 57 ralbidv y = d v A ¬ v < s u u suc y = v suc y v A ¬ v < s u u suc d = v suc d
59 52 58 anbi12d y = d y dom u v A ¬ v < s u u suc y = v suc y d dom u v A ¬ v < s u u suc d = v suc d
60 59 rexbidv y = d u A y dom u v A ¬ v < s u u suc y = v suc y u A d dom u v A ¬ v < s u u suc d = v suc d
61 29 eleq2d u = e d dom u d dom e
62 reseq1 u = e u suc d = e suc d
63 62 eqeq1d u = e u suc d = v suc d e suc d = v suc d
64 32 63 imbi12d u = e ¬ v < s u u suc d = v suc d ¬ v < s e e suc d = v suc d
65 64 ralbidv u = e v A ¬ v < s u u suc d = v suc d v A ¬ v < s e e suc d = v suc d
66 reseq1 v = f v suc d = f suc d
67 66 eqeq2d v = f e suc d = v suc d e suc d = f suc d
68 38 67 imbi12d v = f ¬ v < s e e suc d = v suc d ¬ f < s e e suc d = f suc d
69 68 cbvralvw v A ¬ v < s e e suc d = v suc d f A ¬ f < s e e suc d = f suc d
70 65 69 bitrdi u = e v A ¬ v < s u u suc d = v suc d f A ¬ f < s e e suc d = f suc d
71 61 70 anbi12d u = e d dom u v A ¬ v < s u u suc d = v suc d d dom e f A ¬ f < s e e suc d = f suc d
72 71 cbvrexvw u A d dom u v A ¬ v < s u u suc d = v suc d e A d dom e f A ¬ f < s e e suc d = f suc d
73 60 72 bitrdi y = d u A y dom u v A ¬ v < s u u suc y = v suc y e A d dom e f A ¬ f < s e e suc d = f suc d
74 73 cbvabv y | u A y dom u v A ¬ v < s u u suc y = v suc y = d | e A d dom e f A ¬ f < s e e suc d = f suc d
75 74 mpteq1i c y | u A y dom u v A ¬ v < s u u suc y = v suc y ι a | e A c dom e f A ¬ f < s e e suc c = f suc c e c = a = c d | e A d dom e f A ¬ f < s e e suc d = f suc d ι a | e A c dom e f A ¬ f < s e e suc c = f suc c e c = a
76 51 75 eqtri g y | u A y dom u v A ¬ v < s u u suc y = v suc y ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x = c d | e A d dom e f A ¬ f < s e e suc d = f suc d ι a | e A c dom e f A ¬ f < s e e suc c = f suc c e c = a
77 9 14 76 ifbieq12i if x A y A ¬ x < s y ι x A | y A ¬ x < s y dom ι x A | y A ¬ x < s y 2 𝑜 g y | u A y dom u v A ¬ v < s u u suc y = v suc y ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x = if a A b A ¬ a < s b ι a A | b A ¬ a < s b dom ι a A | b A ¬ a < s b 2 𝑜 c d | e A d dom e f A ¬ f < s e e suc d = f suc d ι a | e A c dom e f A ¬ f < s e e suc c = f suc c e c = a
78 1 77 eqtri S = if a A b A ¬ a < s b ι a A | b A ¬ a < s b dom ι a A | b A ¬ a < s b 2 𝑜 c d | e A d dom e f A ¬ f < s e e suc d = f suc d ι a | e A c dom e f A ¬ f < s e e suc c = f suc c e c = a