Metamath Proof Explorer


Theorem bday0s

Description: Calculate the birthday of surreal zero. (Contributed by Scott Fenton, 7-Aug-2024)

Ref Expression
Assertion bday0s
|- ( bday ` 0s ) = (/)

Proof

Step Hyp Ref Expression
1 df-0s
 |-  0s = ( (/) |s (/) )
2 1 fveq2i
 |-  ( bday ` 0s ) = ( bday ` ( (/) |s (/) ) )
3 0elpw
 |-  (/) e. ~P No
4 nulssgt
 |-  ( (/) e. ~P No -> (/) <
5 scutbday
 |-  ( (/) < ( bday ` ( (/) |s (/) ) ) = |^| ( bday " { x e. No | ( (/) <
6 3 4 5 mp2b
 |-  ( bday ` ( (/) |s (/) ) ) = |^| ( bday " { x e. No | ( (/) <
7 2 6 eqtri
 |-  ( bday ` 0s ) = |^| ( bday " { x e. No | ( (/) <
8 snelpwi
 |-  ( x e. No -> { x } e. ~P No )
9 nulsslt
 |-  ( { x } e. ~P No -> (/) <
10 nulssgt
 |-  ( { x } e. ~P No -> { x } <
11 9 10 jca
 |-  ( { x } e. ~P No -> ( (/) <
12 8 11 syl
 |-  ( x e. No -> ( (/) <
13 12 rabeqc
 |-  { x e. No | ( (/) <
14 bdaydm
 |-  dom bday = No
15 13 14 eqtr4i
 |-  { x e. No | ( (/) <
16 15 imaeq2i
 |-  ( bday " { x e. No | ( (/) <
17 imadmrn
 |-  ( bday " dom bday ) = ran bday
18 bdayrn
 |-  ran bday = On
19 16 17 18 3eqtri
 |-  ( bday " { x e. No | ( (/) <
20 19 inteqi
 |-  |^| ( bday " { x e. No | ( (/) <
21 inton
 |-  |^| On = (/)
22 7 20 21 3eqtri
 |-  ( bday ` 0s ) = (/)