Step |
Hyp |
Ref |
Expression |
1 |
|
0sno |
|- 0s e. No |
2 |
|
slerflex |
|- ( 0s e. No -> 0s <_s 0s ) |
3 |
1 2
|
ax-mp |
|- 0s <_s 0s |
4 |
1
|
elexi |
|- 0s e. _V |
5 |
|
breq2 |
|- ( x = 0s -> ( 0s <_s x <-> 0s <_s 0s ) ) |
6 |
4 5
|
rexsn |
|- ( E. x e. { 0s } 0s <_s x <-> 0s <_s 0s ) |
7 |
3 6
|
mpbir |
|- E. x e. { 0s } 0s <_s x |
8 |
7
|
orci |
|- ( E. x e. { 0s } 0s <_s x \/ E. y e. (/) y <_s 1s ) |
9 |
|
0elpw |
|- (/) e. ~P No |
10 |
|
nulssgt |
|- ( (/) e. ~P No -> (/) < |
11 |
9 10
|
ax-mp |
|- (/) < |
12 |
|
snssi |
|- ( 0s e. No -> { 0s } C_ No ) |
13 |
1 12
|
ax-mp |
|- { 0s } C_ No |
14 |
|
snex |
|- { 0s } e. _V |
15 |
14
|
elpw |
|- ( { 0s } e. ~P No <-> { 0s } C_ No ) |
16 |
13 15
|
mpbir |
|- { 0s } e. ~P No |
17 |
|
nulssgt |
|- ( { 0s } e. ~P No -> { 0s } < |
18 |
16 17
|
ax-mp |
|- { 0s } < |
19 |
|
df-0s |
|- 0s = ( (/) |s (/) ) |
20 |
|
df-1s |
|- 1s = ( { 0s } |s (/) ) |
21 |
|
sltrec |
|- ( ( ( (/) < ( 0s ( E. x e. { 0s } 0s <_s x \/ E. y e. (/) y <_s 1s ) ) ) |
22 |
11 18 19 20 21
|
mp4an |
|- ( 0s ( E. x e. { 0s } 0s <_s x \/ E. y e. (/) y <_s 1s ) ) |
23 |
8 22
|
mpbir |
|- 0s |