Metamath Proof Explorer


Theorem 0slt1s

Description: Surreal zero is less than surreal one. Theorem from Conway p. 7. (Contributed by Scott Fenton, 7-Aug-2024)

Ref Expression
Assertion 0slt1s
|- 0s 

Proof

Step Hyp Ref Expression
1 0sno
 |-  0s e. No
2 slerflex
 |-  ( 0s e. No -> 0s <_s 0s )
3 1 2 ax-mp
 |-  0s <_s 0s
4 1 elexi
 |-  0s e. _V
5 breq2
 |-  ( x = 0s -> ( 0s <_s x <-> 0s <_s 0s ) )
6 4 5 rexsn
 |-  ( E. x e. { 0s } 0s <_s x <-> 0s <_s 0s )
7 3 6 mpbir
 |-  E. x e. { 0s } 0s <_s x
8 7 orci
 |-  ( E. x e. { 0s } 0s <_s x \/ E. y e. (/) y <_s 1s )
9 0elpw
 |-  (/) e. ~P No
10 nulssgt
 |-  ( (/) e. ~P No -> (/) <
11 9 10 ax-mp
 |-  (/) <
12 snssi
 |-  ( 0s e. No -> { 0s } C_ No )
13 1 12 ax-mp
 |-  { 0s } C_ No
14 snex
 |-  { 0s } e. _V
15 14 elpw
 |-  ( { 0s } e. ~P No <-> { 0s } C_ No )
16 13 15 mpbir
 |-  { 0s } e. ~P No
17 nulssgt
 |-  ( { 0s } e. ~P No -> { 0s } <
18 16 17 ax-mp
 |-  { 0s } <
19 df-0s
 |-  0s = ( (/) |s (/) )
20 df-1s
 |-  1s = ( { 0s } |s (/) )
21 sltrec
 |-  ( ( ( (/) < ( 0s  ( E. x e. { 0s } 0s <_s x \/ E. y e. (/) y <_s 1s ) ) )
22 11 18 19 20 21 mp4an
 |-  ( 0s  ( E. x e. { 0s } 0s <_s x \/ E. y e. (/) y <_s 1s ) )
23 8 22 mpbir
 |-  0s