Description: Surreal less than or equal is reflexive. Theorem 0(iii) of Conway p. 16. (Contributed by Scott Fenton, 7-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | slerflex | |- ( A e. No -> A <_s A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltirr | |- ( A e. No -> -. A |
|
2 | slenlt | |- ( ( A e. No /\ A e. No ) -> ( A <_s A <-> -. A |
|
3 | 2 | anidms | |- ( A e. No -> ( A <_s A <-> -. A |
4 | 1 3 | mpbird | |- ( A e. No -> A <_s A ) |