Metamath Proof Explorer


Theorem slerflex

Description: Surreal less than or equal is reflexive. Theorem 0(iii) of Conway p. 16. (Contributed by Scott Fenton, 7-Aug-2024)

Ref Expression
Assertion slerflex
|- ( A e. No -> A <_s A )

Proof

Step Hyp Ref Expression
1 sltirr
 |-  ( A e. No -> -. A 
2 slenlt
 |-  ( ( A e. No /\ A e. No ) -> ( A <_s A <-> -. A 
3 2 anidms
 |-  ( A e. No -> ( A <_s A <-> -. A 
4 1 3 mpbird
 |-  ( A e. No -> A <_s A )