Metamath Proof Explorer


Theorem sltirr

Description: Surreal less than is irreflexive. (Contributed by Scott Fenton, 16-Jun-2011)

Ref Expression
Assertion sltirr
|- ( A e. No -> -. A 

Proof

Step Hyp Ref Expression
1 sltso
 |-  
2 sonr
 |-  ( (  -. A 
3 1 2 mpan
 |-  ( A e. No -> -. A