Metamath Proof Explorer


Theorem sltirr

Description: Surreal less-than is irreflexive. (Contributed by Scott Fenton, 16-Jun-2011)

Ref Expression
Assertion sltirr ANo¬A<sA

Proof

Step Hyp Ref Expression
1 sltso <sOrNo
2 sonr <sOrNoANo¬A<sA
3 1 2 mpan ANo¬A<sA