Database
SURREAL NUMBERS
Initial consequences of Alling's axioms
Ordering Theorems
sltirr
Next ⟩
slttr
Metamath Proof Explorer
Ascii
Unicode
Theorem
sltirr
Description:
Surreal less-than is irreflexive.
(Contributed by
Scott Fenton
, 16-Jun-2011)
Ref
Expression
Assertion
sltirr
⊢
A
∈
No
→
¬
A
<
s
A
Proof
Step
Hyp
Ref
Expression
1
sltso
⊢
<
s
Or
No
2
sonr
⊢
<
s
Or
No
∧
A
∈
No
→
¬
A
<
s
A
3
1
2
mpan
⊢
A
∈
No
→
¬
A
<
s
A