Metamath Proof Explorer


Theorem sltirr

Description: Surreal less than is irreflexive. (Contributed by Scott Fenton, 16-Jun-2011)

Ref Expression
Assertion sltirr ( 𝐴 No → ¬ 𝐴 <s 𝐴 )

Proof

Step Hyp Ref Expression
1 sltso <s Or No
2 sonr ( ( <s Or No 𝐴 No ) → ¬ 𝐴 <s 𝐴 )
3 1 2 mpan ( 𝐴 No → ¬ 𝐴 <s 𝐴 )