Metamath Proof Explorer
		
		
		
		Description:  Surreal less-than is transitive.  (Contributed by Scott Fenton, 16-Jun-2011)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | slttr | ⊢  ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( ( 𝐴  <s  𝐵  ∧  𝐵  <s  𝐶 )  →  𝐴  <s  𝐶 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sltso | ⊢  <s   Or   No | 
						
							| 2 |  | sotr | ⊢ ( (  <s   Or   No   ∧  ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  ) )  →  ( ( 𝐴  <s  𝐵  ∧  𝐵  <s  𝐶 )  →  𝐴  <s  𝐶 ) ) | 
						
							| 3 | 1 2 | mpan | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( ( 𝐴  <s  𝐵  ∧  𝐵  <s  𝐶 )  →  𝐴  <s  𝐶 ) ) |