Metamath Proof Explorer
Description: Surreal less than is transitive. (Contributed by Scott Fenton, 16-Jun-2011)
|
|
Ref |
Expression |
|
Assertion |
slttr |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐴 <s 𝐵 ∧ 𝐵 <s 𝐶 ) → 𝐴 <s 𝐶 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
sltso |
⊢ <s Or No |
2 |
|
sotr |
⊢ ( ( <s Or No ∧ ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ) → ( ( 𝐴 <s 𝐵 ∧ 𝐵 <s 𝐶 ) → 𝐴 <s 𝐶 ) ) |
3 |
1 2
|
mpan |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐴 <s 𝐵 ∧ 𝐵 <s 𝐶 ) → 𝐴 <s 𝐶 ) ) |