Metamath Proof Explorer


Theorem slttr

Description: Surreal less than is transitive. (Contributed by Scott Fenton, 16-Jun-2011)

Ref Expression
Assertion slttr ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( ( 𝐴 <s 𝐵𝐵 <s 𝐶 ) → 𝐴 <s 𝐶 ) )

Proof

Step Hyp Ref Expression
1 sltso <s Or No
2 sotr ( ( <s Or No ∧ ( 𝐴 No 𝐵 No 𝐶 No ) ) → ( ( 𝐴 <s 𝐵𝐵 <s 𝐶 ) → 𝐴 <s 𝐶 ) )
3 1 2 mpan ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( ( 𝐴 <s 𝐵𝐵 <s 𝐶 ) → 𝐴 <s 𝐶 ) )