Metamath Proof Explorer


Theorem sltasym

Description: Surreal less than is asymmetric. (Contributed by Scott Fenton, 16-Jun-2011)

Ref Expression
Assertion sltasym ( ( 𝐴 No 𝐵 No ) → ( 𝐴 <s 𝐵 → ¬ 𝐵 <s 𝐴 ) )

Proof

Step Hyp Ref Expression
1 sltso <s Or No
2 soasym ( ( <s Or No ∧ ( 𝐴 No 𝐵 No ) ) → ( 𝐴 <s 𝐵 → ¬ 𝐵 <s 𝐴 ) )
3 1 2 mpan ( ( 𝐴 No 𝐵 No ) → ( 𝐴 <s 𝐵 → ¬ 𝐵 <s 𝐴 ) )