Metamath Proof Explorer


Theorem sltasym

Description: Surreal less-than is asymmetric. (Contributed by Scott Fenton, 16-Jun-2011)

Ref Expression
Assertion sltasym ANoBNoA<sB¬B<sA

Proof

Step Hyp Ref Expression
1 sltso <sOrNo
2 soasym <sOrNoANoBNoA<sB¬B<sA
3 1 2 mpan ANoBNoA<sB¬B<sA