Metamath Proof Explorer


Theorem sltasym

Description: Surreal less than is asymmetric. (Contributed by Scott Fenton, 16-Jun-2011)

Ref Expression
Assertion sltasym A No B No A < s B ¬ B < s A

Proof

Step Hyp Ref Expression
1 sltso < s Or No
2 soasym < s Or No A No B No A < s B ¬ B < s A
3 1 2 mpan A No B No A < s B ¬ B < s A