Metamath Proof Explorer


Theorem sltasym

Description: Surreal less than is asymmetric. (Contributed by Scott Fenton, 16-Jun-2011)

Ref Expression
Assertion sltasym
|- ( ( A e. No /\ B e. No ) -> ( A  -. B 

Proof

Step Hyp Ref Expression
1 sltso
 |-  
2 soasym
 |-  ( (  ( A  -. B 
3 1 2 mpan
 |-  ( ( A e. No /\ B e. No ) -> ( A  -. B