Metamath Proof Explorer


Theorem sltlin

Description: Surreal less than obeys trichotomy. (Contributed by Scott Fenton, 16-Jun-2011)

Ref Expression
Assertion sltlin ( ( 𝐴 No 𝐵 No ) → ( 𝐴 <s 𝐵𝐴 = 𝐵𝐵 <s 𝐴 ) )

Proof

Step Hyp Ref Expression
1 sltso <s Or No
2 solin ( ( <s Or No ∧ ( 𝐴 No 𝐵 No ) ) → ( 𝐴 <s 𝐵𝐴 = 𝐵𝐵 <s 𝐴 ) )
3 1 2 mpan ( ( 𝐴 No 𝐵 No ) → ( 𝐴 <s 𝐵𝐴 = 𝐵𝐵 <s 𝐴 ) )