Metamath Proof Explorer


Theorem slttrieq2

Description: Trichotomy law for surreal less than. (Contributed by Scott Fenton, 22-Apr-2012)

Ref Expression
Assertion slttrieq2 ( ( 𝐴 No 𝐵 No ) → ( 𝐴 = 𝐵 ↔ ( ¬ 𝐴 <s 𝐵 ∧ ¬ 𝐵 <s 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 sltso <s Or No
2 sotrieq2 ( ( <s Or No ∧ ( 𝐴 No 𝐵 No ) ) → ( 𝐴 = 𝐵 ↔ ( ¬ 𝐴 <s 𝐵 ∧ ¬ 𝐵 <s 𝐴 ) ) )
3 1 2 mpan ( ( 𝐴 No 𝐵 No ) → ( 𝐴 = 𝐵 ↔ ( ¬ 𝐴 <s 𝐵 ∧ ¬ 𝐵 <s 𝐴 ) ) )