Metamath Proof Explorer
Description: Trichotomy law for surreal less than. (Contributed by Scott Fenton, 22-Apr-2012)
|
|
Ref |
Expression |
|
Assertion |
slttrieq2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 = 𝐵 ↔ ( ¬ 𝐴 <s 𝐵 ∧ ¬ 𝐵 <s 𝐴 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
sltso |
⊢ <s Or No |
2 |
|
sotrieq2 |
⊢ ( ( <s Or No ∧ ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ) → ( 𝐴 = 𝐵 ↔ ( ¬ 𝐴 <s 𝐵 ∧ ¬ 𝐵 <s 𝐴 ) ) ) |
3 |
1 2
|
mpan |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 = 𝐵 ↔ ( ¬ 𝐴 <s 𝐵 ∧ ¬ 𝐵 <s 𝐴 ) ) ) |