Metamath Proof Explorer


Theorem slttrieq2

Description: Trichotomy law for surreal less than. (Contributed by Scott Fenton, 22-Apr-2012)

Ref Expression
Assertion slttrieq2
|- ( ( A e. No /\ B e. No ) -> ( A = B <-> ( -. A 

Proof

Step Hyp Ref Expression
1 sltso
 |-  
2 sotrieq2
 |-  ( (  ( A = B <-> ( -. A 
3 1 2 mpan
 |-  ( ( A e. No /\ B e. No ) -> ( A = B <-> ( -. A