Metamath Proof Explorer


Theorem slttr

Description: Surreal less than is transitive. (Contributed by Scott Fenton, 16-Jun-2011)

Ref Expression
Assertion slttr A No B No C No A < s B B < s C A < s C

Proof

Step Hyp Ref Expression
1 sltso < s Or No
2 sotr < s Or No A No B No C No A < s B B < s C A < s C
3 1 2 mpan A No B No C No A < s B B < s C A < s C