Metamath Proof Explorer


Theorem slttr

Description: Surreal less-than is transitive. (Contributed by Scott Fenton, 16-Jun-2011)

Ref Expression
Assertion slttr ANoBNoCNoA<sBB<sCA<sC

Proof

Step Hyp Ref Expression
1 sltso <sOrNo
2 sotr <sOrNoANoBNoCNoA<sBB<sCA<sC
3 1 2 mpan ANoBNoCNoA<sBB<sCA<sC