Metamath Proof Explorer


Theorem slerflex

Description: Surreal less than or equal is reflexive. Theorem 0(iii) of Conway p. 16. (Contributed by Scott Fenton, 7-Aug-2024)

Ref Expression
Assertion slerflex ( 𝐴 No 𝐴 ≤s 𝐴 )

Proof

Step Hyp Ref Expression
1 sltirr ( 𝐴 No → ¬ 𝐴 <s 𝐴 )
2 slenlt ( ( 𝐴 No 𝐴 No ) → ( 𝐴 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐴 ) )
3 2 anidms ( 𝐴 No → ( 𝐴 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐴 ) )
4 1 3 mpbird ( 𝐴 No 𝐴 ≤s 𝐴 )