Metamath Proof Explorer
Description: Surreal less than or equal is reflexive. Theorem 0(iii) of Conway
p. 16. (Contributed by Scott Fenton, 7-Aug-2024)
|
|
Ref |
Expression |
|
Assertion |
slerflex |
⊢ ( 𝐴 ∈ No → 𝐴 ≤s 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
sltirr |
⊢ ( 𝐴 ∈ No → ¬ 𝐴 <s 𝐴 ) |
2 |
|
slenlt |
⊢ ( ( 𝐴 ∈ No ∧ 𝐴 ∈ No ) → ( 𝐴 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐴 ) ) |
3 |
2
|
anidms |
⊢ ( 𝐴 ∈ No → ( 𝐴 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐴 ) ) |
4 |
1 3
|
mpbird |
⊢ ( 𝐴 ∈ No → 𝐴 ≤s 𝐴 ) |