Metamath Proof Explorer


Theorem slerflex

Description: Surreal less-than or equal is reflexive. Theorem 0(iii) of Conway p. 16. (Contributed by Scott Fenton, 7-Aug-2024)

Ref Expression
Assertion slerflex ANoAsA

Proof

Step Hyp Ref Expression
1 sltirr ANo¬A<sA
2 slenlt ANoANoAsA¬A<sA
3 2 anidms ANoAsA¬A<sA
4 1 3 mpbird ANoAsA