Metamath Proof Explorer


Theorem slerflex

Description: Surreal less than or equal is reflexive. Theorem 0(iii) of Conway p. 16. (Contributed by Scott Fenton, 7-Aug-2024)

Ref Expression
Assertion slerflex A No A s A

Proof

Step Hyp Ref Expression
1 sltirr A No ¬ A < s A
2 slenlt A No A No A s A ¬ A < s A
3 2 anidms A No A s A ¬ A < s A
4 1 3 mpbird A No A s A