Metamath Proof Explorer
Description: Define the surreal less-than or equal predicate. Compare df-le .
(Contributed by Scott Fenton, 8-Dec-2021)
|
|
Ref |
Expression |
|
Assertion |
df-sle |
|
Detailed syntax breakdown
| Step |
Hyp |
Ref |
Expression |
| 0 |
|
csle |
|
| 1 |
|
csur |
|
| 2 |
1 1
|
cxp |
|
| 3 |
|
cslt |
|
| 4 |
3
|
ccnv |
|
| 5 |
2 4
|
cdif |
|
| 6 |
0 5
|
wceq |
|