Metamath Proof Explorer


Definition df-sle

Description: Define the surreal less than or equal predicate. Compare df-le . (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion df-sle
|- <_s = ( ( No X. No ) \ `' 

Detailed syntax breakdown

Step Hyp Ref Expression
0 csle
 |-  <_s
1 csur
 |-  No
2 1 1 cxp
 |-  ( No X. No )
3 cslt
 |-  
4 3 ccnv
 |-  `' 
5 2 4 cdif
 |-  ( ( No X. No ) \ `' 
6 0 5 wceq
 |-  <_s = ( ( No X. No ) \ `'