Metamath Proof Explorer
Description: Define the surreal less than or equal predicate. Compare df-le .
(Contributed by Scott Fenton, 8-Dec-2021)
|
|
Ref |
Expression |
|
Assertion |
df-sle |
|
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
csle |
|
1 |
|
csur |
|
2 |
1 1
|
cxp |
|
3 |
|
cslt |
|
4 |
3
|
ccnv |
|
5 |
2 4
|
cdif |
|
6 |
0 5
|
wceq |
|