Metamath Proof Explorer
Description: Define the surreal less than or equal predicate. Compare df-le .
(Contributed by Scott Fenton, 8-Dec-2021)
|
|
Ref |
Expression |
|
Assertion |
df-sle |
⊢ ≤s = ( ( No × No ) ∖ ◡ <s ) |
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
csle |
⊢ ≤s |
1 |
|
csur |
⊢ No |
2 |
1 1
|
cxp |
⊢ ( No × No ) |
3 |
|
cslt |
⊢ <s |
4 |
3
|
ccnv |
⊢ ◡ <s |
5 |
2 4
|
cdif |
⊢ ( ( No × No ) ∖ ◡ <s ) |
6 |
0 5
|
wceq |
⊢ ≤s = ( ( No × No ) ∖ ◡ <s ) |