Metamath Proof Explorer


Definition df-sle

Description: Define the surreal less than or equal predicate. Compare df-le . (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion df-sle ≤s = ( ( No × No ) ∖ <s )

Detailed syntax breakdown

Step Hyp Ref Expression
0 csle ≤s
1 csur No
2 1 1 cxp ( No × No )
3 cslt <s
4 3 ccnv <s
5 2 4 cdif ( ( No × No ) ∖ <s )
6 0 5 wceq ≤s = ( ( No × No ) ∖ <s )