Metamath Proof Explorer


Theorem slenlt

Description: Surreal less-than or equal in terms of less-than. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion slenlt ANoBNoAsB¬B<sA

Proof

Step Hyp Ref Expression
1 df-sle s=No×No<s-1
2 1 breqi AsBANo×No<s-1B
3 brdif ANo×No<s-1BANo×NoB¬A<s-1B
4 brxp ANo×NoBANoBNo
5 4 anbi1i ANo×NoB¬A<s-1BANoBNo¬A<s-1B
6 2 3 5 3bitri AsBANoBNo¬A<s-1B
7 ibar ANoBNo¬A<s-1BANoBNo¬A<s-1B
8 brcnvg ANoBNoA<s-1BB<sA
9 8 notbid ANoBNo¬A<s-1B¬B<sA
10 7 9 bitr3d ANoBNoANoBNo¬A<s-1B¬B<sA
11 6 10 bitrid ANoBNoAsB¬B<sA