Metamath Proof Explorer


Theorem slenlt

Description: Surreal less than or equal in terms of less than. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion slenlt ( ( 𝐴 No 𝐵 No ) → ( 𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴 ) )

Proof

Step Hyp Ref Expression
1 df-sle ≤s = ( ( No × No ) ∖ <s )
2 1 breqi ( 𝐴 ≤s 𝐵𝐴 ( ( No × No ) ∖ <s ) 𝐵 )
3 brdif ( 𝐴 ( ( No × No ) ∖ <s ) 𝐵 ↔ ( 𝐴 ( No × No ) 𝐵 ∧ ¬ 𝐴 <s 𝐵 ) )
4 brxp ( 𝐴 ( No × No ) 𝐵 ↔ ( 𝐴 No 𝐵 No ) )
5 4 anbi1i ( ( 𝐴 ( No × No ) 𝐵 ∧ ¬ 𝐴 <s 𝐵 ) ↔ ( ( 𝐴 No 𝐵 No ) ∧ ¬ 𝐴 <s 𝐵 ) )
6 2 3 5 3bitri ( 𝐴 ≤s 𝐵 ↔ ( ( 𝐴 No 𝐵 No ) ∧ ¬ 𝐴 <s 𝐵 ) )
7 ibar ( ( 𝐴 No 𝐵 No ) → ( ¬ 𝐴 <s 𝐵 ↔ ( ( 𝐴 No 𝐵 No ) ∧ ¬ 𝐴 <s 𝐵 ) ) )
8 brcnvg ( ( 𝐴 No 𝐵 No ) → ( 𝐴 <s 𝐵𝐵 <s 𝐴 ) )
9 8 notbid ( ( 𝐴 No 𝐵 No ) → ( ¬ 𝐴 <s 𝐵 ↔ ¬ 𝐵 <s 𝐴 ) )
10 7 9 bitr3d ( ( 𝐴 No 𝐵 No ) → ( ( ( 𝐴 No 𝐵 No ) ∧ ¬ 𝐴 <s 𝐵 ) ↔ ¬ 𝐵 <s 𝐴 ) )
11 6 10 syl5bb ( ( 𝐴 No 𝐵 No ) → ( 𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴 ) )