Step |
Hyp |
Ref |
Expression |
1 |
|
df-sle |
⊢ ≤s = ( ( No × No ) ∖ ◡ <s ) |
2 |
1
|
breqi |
⊢ ( 𝐴 ≤s 𝐵 ↔ 𝐴 ( ( No × No ) ∖ ◡ <s ) 𝐵 ) |
3 |
|
brdif |
⊢ ( 𝐴 ( ( No × No ) ∖ ◡ <s ) 𝐵 ↔ ( 𝐴 ( No × No ) 𝐵 ∧ ¬ 𝐴 ◡ <s 𝐵 ) ) |
4 |
|
brxp |
⊢ ( 𝐴 ( No × No ) 𝐵 ↔ ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ) |
5 |
4
|
anbi1i |
⊢ ( ( 𝐴 ( No × No ) 𝐵 ∧ ¬ 𝐴 ◡ <s 𝐵 ) ↔ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ¬ 𝐴 ◡ <s 𝐵 ) ) |
6 |
2 3 5
|
3bitri |
⊢ ( 𝐴 ≤s 𝐵 ↔ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ¬ 𝐴 ◡ <s 𝐵 ) ) |
7 |
|
ibar |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ¬ 𝐴 ◡ <s 𝐵 ↔ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ¬ 𝐴 ◡ <s 𝐵 ) ) ) |
8 |
|
brcnvg |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 ◡ <s 𝐵 ↔ 𝐵 <s 𝐴 ) ) |
9 |
8
|
notbid |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ¬ 𝐴 ◡ <s 𝐵 ↔ ¬ 𝐵 <s 𝐴 ) ) |
10 |
7 9
|
bitr3d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ¬ 𝐴 ◡ <s 𝐵 ) ↔ ¬ 𝐵 <s 𝐴 ) ) |
11 |
6 10
|
syl5bb |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴 ) ) |