Metamath Proof Explorer


Theorem slenlt

Description: Surreal less than or equal in terms of less than. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion slenlt
|- ( ( A e. No /\ B e. No ) -> ( A <_s B <-> -. B 

Proof

Step Hyp Ref Expression
1 df-sle
 |-  <_s = ( ( No X. No ) \ `' 
2 1 breqi
 |-  ( A <_s B <-> A ( ( No X. No ) \ `' 
3 brdif
 |-  ( A ( ( No X. No ) \ `'  ( A ( No X. No ) B /\ -. A `' 
4 brxp
 |-  ( A ( No X. No ) B <-> ( A e. No /\ B e. No ) )
5 4 anbi1i
 |-  ( ( A ( No X. No ) B /\ -. A `'  ( ( A e. No /\ B e. No ) /\ -. A `' 
6 2 3 5 3bitri
 |-  ( A <_s B <-> ( ( A e. No /\ B e. No ) /\ -. A `' 
7 ibar
 |-  ( ( A e. No /\ B e. No ) -> ( -. A `'  ( ( A e. No /\ B e. No ) /\ -. A `' 
8 brcnvg
 |-  ( ( A e. No /\ B e. No ) -> ( A `'  B 
9 8 notbid
 |-  ( ( A e. No /\ B e. No ) -> ( -. A `'  -. B 
10 7 9 bitr3d
 |-  ( ( A e. No /\ B e. No ) -> ( ( ( A e. No /\ B e. No ) /\ -. A `'  -. B 
11 6 10 syl5bb
 |-  ( ( A e. No /\ B e. No ) -> ( A <_s B <-> -. B