Description: Surreal less than in terms of less than or equal. (Contributed by Scott Fenton, 8-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | sltnle | |- ( ( A e. No /\ B e. No ) -> ( A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slenlt | |- ( ( B e. No /\ A e. No ) -> ( B <_s A <-> -. A |
|
2 | 1 | ancoms | |- ( ( A e. No /\ B e. No ) -> ( B <_s A <-> -. A |
3 | 2 | con2bid | |- ( ( A e. No /\ B e. No ) -> ( A |