Metamath Proof Explorer


Theorem sltnle

Description: Surreal less than in terms of less than or equal. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion sltnle ( ( 𝐴 No 𝐵 No ) → ( 𝐴 <s 𝐵 ↔ ¬ 𝐵 ≤s 𝐴 ) )

Proof

Step Hyp Ref Expression
1 slenlt ( ( 𝐵 No 𝐴 No ) → ( 𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵 ) )
2 1 ancoms ( ( 𝐴 No 𝐵 No ) → ( 𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵 ) )
3 2 con2bid ( ( 𝐴 No 𝐵 No ) → ( 𝐴 <s 𝐵 ↔ ¬ 𝐵 ≤s 𝐴 ) )