Description: Surreal less than in terms of less than or equal. (Contributed by Scott Fenton, 8-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | sltnle | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 <s 𝐵 ↔ ¬ 𝐵 ≤s 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slenlt | ⊢ ( ( 𝐵 ∈ No ∧ 𝐴 ∈ No ) → ( 𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵 ) ) | |
2 | 1 | ancoms | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵 ) ) |
3 | 2 | con2bid | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 <s 𝐵 ↔ ¬ 𝐵 ≤s 𝐴 ) ) |