Description: Surreal less-than in terms of less-than or equal. (Contributed by Scott Fenton, 8-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sltnle | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 <s 𝐵 ↔ ¬ 𝐵 ≤s 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slenlt | ⊢ ( ( 𝐵 ∈ No ∧ 𝐴 ∈ No ) → ( 𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵 ) ) | |
| 2 | 1 | ancoms | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵 ) ) |
| 3 | 2 | con2bid | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 <s 𝐵 ↔ ¬ 𝐵 ≤s 𝐴 ) ) |