Metamath Proof Explorer


Theorem sleloe

Description: Surreal less than or equal in terms of less than. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion sleloe ( ( 𝐴 No 𝐵 No ) → ( 𝐴 ≤s 𝐵 ↔ ( 𝐴 <s 𝐵𝐴 = 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 slenlt ( ( 𝐴 No 𝐵 No ) → ( 𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴 ) )
2 orcom ( ( 𝐴 <s 𝐵𝐴 = 𝐵 ) ↔ ( 𝐴 = 𝐵𝐴 <s 𝐵 ) )
3 eqcom ( 𝐴 = 𝐵𝐵 = 𝐴 )
4 3 orbi1i ( ( 𝐴 = 𝐵𝐴 <s 𝐵 ) ↔ ( 𝐵 = 𝐴𝐴 <s 𝐵 ) )
5 2 4 bitri ( ( 𝐴 <s 𝐵𝐴 = 𝐵 ) ↔ ( 𝐵 = 𝐴𝐴 <s 𝐵 ) )
6 sltso <s Or No
7 sotric ( ( <s Or No ∧ ( 𝐵 No 𝐴 No ) ) → ( 𝐵 <s 𝐴 ↔ ¬ ( 𝐵 = 𝐴𝐴 <s 𝐵 ) ) )
8 6 7 mpan ( ( 𝐵 No 𝐴 No ) → ( 𝐵 <s 𝐴 ↔ ¬ ( 𝐵 = 𝐴𝐴 <s 𝐵 ) ) )
9 8 ancoms ( ( 𝐴 No 𝐵 No ) → ( 𝐵 <s 𝐴 ↔ ¬ ( 𝐵 = 𝐴𝐴 <s 𝐵 ) ) )
10 9 con2bid ( ( 𝐴 No 𝐵 No ) → ( ( 𝐵 = 𝐴𝐴 <s 𝐵 ) ↔ ¬ 𝐵 <s 𝐴 ) )
11 5 10 syl5bb ( ( 𝐴 No 𝐵 No ) → ( ( 𝐴 <s 𝐵𝐴 = 𝐵 ) ↔ ¬ 𝐵 <s 𝐴 ) )
12 1 11 bitr4d ( ( 𝐴 No 𝐵 No ) → ( 𝐴 ≤s 𝐵 ↔ ( 𝐴 <s 𝐵𝐴 = 𝐵 ) ) )