Step |
Hyp |
Ref |
Expression |
1 |
|
slenlt |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴 ) ) |
2 |
|
orcom |
⊢ ( ( 𝐴 <s 𝐵 ∨ 𝐴 = 𝐵 ) ↔ ( 𝐴 = 𝐵 ∨ 𝐴 <s 𝐵 ) ) |
3 |
|
eqcom |
⊢ ( 𝐴 = 𝐵 ↔ 𝐵 = 𝐴 ) |
4 |
3
|
orbi1i |
⊢ ( ( 𝐴 = 𝐵 ∨ 𝐴 <s 𝐵 ) ↔ ( 𝐵 = 𝐴 ∨ 𝐴 <s 𝐵 ) ) |
5 |
2 4
|
bitri |
⊢ ( ( 𝐴 <s 𝐵 ∨ 𝐴 = 𝐵 ) ↔ ( 𝐵 = 𝐴 ∨ 𝐴 <s 𝐵 ) ) |
6 |
|
sltso |
⊢ <s Or No |
7 |
|
sotric |
⊢ ( ( <s Or No ∧ ( 𝐵 ∈ No ∧ 𝐴 ∈ No ) ) → ( 𝐵 <s 𝐴 ↔ ¬ ( 𝐵 = 𝐴 ∨ 𝐴 <s 𝐵 ) ) ) |
8 |
6 7
|
mpan |
⊢ ( ( 𝐵 ∈ No ∧ 𝐴 ∈ No ) → ( 𝐵 <s 𝐴 ↔ ¬ ( 𝐵 = 𝐴 ∨ 𝐴 <s 𝐵 ) ) ) |
9 |
8
|
ancoms |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐵 <s 𝐴 ↔ ¬ ( 𝐵 = 𝐴 ∨ 𝐴 <s 𝐵 ) ) ) |
10 |
9
|
con2bid |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( 𝐵 = 𝐴 ∨ 𝐴 <s 𝐵 ) ↔ ¬ 𝐵 <s 𝐴 ) ) |
11 |
5 10
|
syl5bb |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( 𝐴 <s 𝐵 ∨ 𝐴 = 𝐵 ) ↔ ¬ 𝐵 <s 𝐴 ) ) |
12 |
1 11
|
bitr4d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 ≤s 𝐵 ↔ ( 𝐴 <s 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |