| Step |
Hyp |
Ref |
Expression |
| 1 |
|
slttrieq2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 = 𝐵 ↔ ( ¬ 𝐴 <s 𝐵 ∧ ¬ 𝐵 <s 𝐴 ) ) ) |
| 2 |
|
slenlt |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴 ) ) |
| 3 |
|
slenlt |
⊢ ( ( 𝐵 ∈ No ∧ 𝐴 ∈ No ) → ( 𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵 ) ) |
| 4 |
3
|
ancoms |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵 ) ) |
| 5 |
2 4
|
anbi12d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( 𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐴 ) ↔ ( ¬ 𝐵 <s 𝐴 ∧ ¬ 𝐴 <s 𝐵 ) ) ) |
| 6 |
|
ancom |
⊢ ( ( ¬ 𝐵 <s 𝐴 ∧ ¬ 𝐴 <s 𝐵 ) ↔ ( ¬ 𝐴 <s 𝐵 ∧ ¬ 𝐵 <s 𝐴 ) ) |
| 7 |
5 6
|
bitrdi |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( 𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐴 ) ↔ ( ¬ 𝐴 <s 𝐵 ∧ ¬ 𝐵 <s 𝐴 ) ) ) |
| 8 |
1 7
|
bitr4d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐴 ) ) ) |