Metamath Proof Explorer


Theorem sletri3

Description: Trichotomy law for surreal less than or equal. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion sletri3 ( ( 𝐴 No 𝐵 No ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤s 𝐵𝐵 ≤s 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 slttrieq2 ( ( 𝐴 No 𝐵 No ) → ( 𝐴 = 𝐵 ↔ ( ¬ 𝐴 <s 𝐵 ∧ ¬ 𝐵 <s 𝐴 ) ) )
2 slenlt ( ( 𝐴 No 𝐵 No ) → ( 𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴 ) )
3 slenlt ( ( 𝐵 No 𝐴 No ) → ( 𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵 ) )
4 3 ancoms ( ( 𝐴 No 𝐵 No ) → ( 𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵 ) )
5 2 4 anbi12d ( ( 𝐴 No 𝐵 No ) → ( ( 𝐴 ≤s 𝐵𝐵 ≤s 𝐴 ) ↔ ( ¬ 𝐵 <s 𝐴 ∧ ¬ 𝐴 <s 𝐵 ) ) )
6 ancom ( ( ¬ 𝐵 <s 𝐴 ∧ ¬ 𝐴 <s 𝐵 ) ↔ ( ¬ 𝐴 <s 𝐵 ∧ ¬ 𝐵 <s 𝐴 ) )
7 5 6 bitrdi ( ( 𝐴 No 𝐵 No ) → ( ( 𝐴 ≤s 𝐵𝐵 ≤s 𝐴 ) ↔ ( ¬ 𝐴 <s 𝐵 ∧ ¬ 𝐵 <s 𝐴 ) ) )
8 1 7 bitr4d ( ( 𝐴 No 𝐵 No ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤s 𝐵𝐵 ≤s 𝐴 ) ) )