Metamath Proof Explorer


Theorem sltletr

Description: Surreal transitive law. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion sltletr ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( ( 𝐴 <s 𝐵𝐵 ≤s 𝐶 ) → 𝐴 <s 𝐶 ) )

Proof

Step Hyp Ref Expression
1 slenlt ( ( 𝐵 No 𝐶 No ) → ( 𝐵 ≤s 𝐶 ↔ ¬ 𝐶 <s 𝐵 ) )
2 1 3adant1 ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( 𝐵 ≤s 𝐶 ↔ ¬ 𝐶 <s 𝐵 ) )
3 2 anbi2d ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( ( 𝐴 <s 𝐵𝐵 ≤s 𝐶 ) ↔ ( 𝐴 <s 𝐵 ∧ ¬ 𝐶 <s 𝐵 ) ) )
4 sltso <s Or No
5 sotr3 ( ( <s Or No ∧ ( 𝐴 No 𝐵 No 𝐶 No ) ) → ( ( 𝐴 <s 𝐵 ∧ ¬ 𝐶 <s 𝐵 ) → 𝐴 <s 𝐶 ) )
6 4 5 mpan ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( ( 𝐴 <s 𝐵 ∧ ¬ 𝐶 <s 𝐵 ) → 𝐴 <s 𝐶 ) )
7 3 6 sylbid ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( ( 𝐴 <s 𝐵𝐵 ≤s 𝐶 ) → 𝐴 <s 𝐶 ) )