Metamath Proof Explorer


Theorem sltletr

Description: Surreal transitive law. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion sltletr A No B No C No A < s B B s C A < s C

Proof

Step Hyp Ref Expression
1 slenlt B No C No B s C ¬ C < s B
2 1 3adant1 A No B No C No B s C ¬ C < s B
3 2 anbi2d A No B No C No A < s B B s C A < s B ¬ C < s B
4 sltso < s Or No
5 sotr3 < s Or No A No B No C No A < s B ¬ C < s B A < s C
6 4 5 mpan A No B No C No A < s B ¬ C < s B A < s C
7 3 6 sylbid A No B No C No A < s B B s C A < s C