Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Surreal numbers - ordering theorems
sltletr
Next ⟩
slelttr
Metamath Proof Explorer
Ascii
Unicode
Theorem
sltletr
Description:
Surreal transitive law.
(Contributed by
Scott Fenton
, 8-Dec-2021)
Ref
Expression
Assertion
sltletr
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
A
<
s
B
∧
B
≤
s
C
→
A
<
s
C
Proof
Step
Hyp
Ref
Expression
1
slenlt
⊢
B
∈
No
∧
C
∈
No
→
B
≤
s
C
↔
¬
C
<
s
B
2
1
3adant1
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
B
≤
s
C
↔
¬
C
<
s
B
3
2
anbi2d
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
A
<
s
B
∧
B
≤
s
C
↔
A
<
s
B
∧
¬
C
<
s
B
4
sltso
⊢
<
s
Or
No
5
sotr3
⊢
<
s
Or
No
∧
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
A
<
s
B
∧
¬
C
<
s
B
→
A
<
s
C
6
4
5
mpan
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
A
<
s
B
∧
¬
C
<
s
B
→
A
<
s
C
7
3
6
sylbid
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
A
<
s
B
∧
B
≤
s
C
→
A
<
s
C