Metamath Proof Explorer


Theorem sotr3

Description: Transitivity law for strict orderings. (Contributed by Scott Fenton, 24-Nov-2021)

Ref Expression
Assertion sotr3 ROrAXAYAZAXRY¬ZRYXRZ

Proof

Step Hyp Ref Expression
1 simp3 XAYAZAZA
2 simp2 XAYAZAYA
3 1 2 jca XAYAZAZAYA
4 sotric ROrAZAYAZRY¬Z=YYRZ
5 3 4 sylan2 ROrAXAYAZAZRY¬Z=YYRZ
6 5 con2bid ROrAXAYAZAZ=YYRZ¬ZRY
7 6 adantr ROrAXAYAZAXRYZ=YYRZ¬ZRY
8 breq2 Z=YXRZXRY
9 8 biimprcd XRYZ=YXRZ
10 9 adantl ROrAXAYAZAXRYZ=YXRZ
11 sotr ROrAXAYAZAXRYYRZXRZ
12 11 expdimp ROrAXAYAZAXRYYRZXRZ
13 10 12 jaod ROrAXAYAZAXRYZ=YYRZXRZ
14 7 13 sylbird ROrAXAYAZAXRY¬ZRYXRZ
15 14 expimpd ROrAXAYAZAXRY¬ZRYXRZ