Description: Surreal transitive law. (Contributed by Scott Fenton, 8-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | sltletr | |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slenlt | |- ( ( B e. No /\ C e. No ) -> ( B <_s C <-> -. C |
|
2 | 1 | 3adant1 | |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( B <_s C <-> -. C |
3 | 2 | anbi2d | |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A |
4 | sltso | |- |
|
5 | sotr3 | |- ( ( |
|
6 | 4 5 | mpan | |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A |
7 | 3 6 | sylbid | |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A |