Metamath Proof Explorer


Theorem sltletr

Description: Surreal transitive law. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion sltletr
|- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A  A 

Proof

Step Hyp Ref Expression
1 slenlt
 |-  ( ( B e. No /\ C e. No ) -> ( B <_s C <-> -. C 
2 1 3adant1
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( B <_s C <-> -. C 
3 2 anbi2d
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A  ( A 
4 sltso
 |-  
5 sotr3
 |-  ( (  ( ( A  A 
6 4 5 mpan
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A  A 
7 3 6 sylbid
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A  A