Description: Surreal transitive law. (Contributed by Scott Fenton, 8-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | slelttr | |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A <_s B /\ B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slenlt | |- ( ( A e. No /\ B e. No ) -> ( A <_s B <-> -. B |
|
| 2 | 1 | 3adant3 | |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( A <_s B <-> -. B |
| 3 | 2 | anbi1d | |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A <_s B /\ B |
| 4 | sltso | |- |
|
| 5 | sotr2 | |- ( ( |
|
| 6 | 4 5 | mpan | |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( -. B |
| 7 | 3 6 | sylbid | |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A <_s B /\ B |