Metamath Proof Explorer


Theorem slelttr

Description: Surreal transitive law. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion slelttr ANoBNoCNoAsBB<sCA<sC

Proof

Step Hyp Ref Expression
1 slenlt ANoBNoAsB¬B<sA
2 1 3adant3 ANoBNoCNoAsB¬B<sA
3 2 anbi1d ANoBNoCNoAsBB<sC¬B<sAB<sC
4 sltso <sOrNo
5 sotr2 <sOrNoANoBNoCNo¬B<sAB<sCA<sC
6 4 5 mpan ANoBNoCNo¬B<sAB<sCA<sC
7 3 6 sylbid ANoBNoCNoAsBB<sCA<sC