Step |
Hyp |
Ref |
Expression |
1 |
|
slenlt |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴 ) ) |
2 |
1
|
3adant3 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴 ) ) |
3 |
2
|
anbi1d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐴 ≤s 𝐵 ∧ 𝐵 <s 𝐶 ) ↔ ( ¬ 𝐵 <s 𝐴 ∧ 𝐵 <s 𝐶 ) ) ) |
4 |
|
sltso |
⊢ <s Or No |
5 |
|
sotr2 |
⊢ ( ( <s Or No ∧ ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ) → ( ( ¬ 𝐵 <s 𝐴 ∧ 𝐵 <s 𝐶 ) → 𝐴 <s 𝐶 ) ) |
6 |
4 5
|
mpan |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( ¬ 𝐵 <s 𝐴 ∧ 𝐵 <s 𝐶 ) → 𝐴 <s 𝐶 ) ) |
7 |
3 6
|
sylbid |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐴 ≤s 𝐵 ∧ 𝐵 <s 𝐶 ) → 𝐴 <s 𝐶 ) ) |