Metamath Proof Explorer


Theorem slelttr

Description: Surreal transitive law. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion slelttr ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( ( 𝐴 ≤s 𝐵𝐵 <s 𝐶 ) → 𝐴 <s 𝐶 ) )

Proof

Step Hyp Ref Expression
1 slenlt ( ( 𝐴 No 𝐵 No ) → ( 𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴 ) )
2 1 3adant3 ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( 𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴 ) )
3 2 anbi1d ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( ( 𝐴 ≤s 𝐵𝐵 <s 𝐶 ) ↔ ( ¬ 𝐵 <s 𝐴𝐵 <s 𝐶 ) ) )
4 sltso <s Or No
5 sotr2 ( ( <s Or No ∧ ( 𝐴 No 𝐵 No 𝐶 No ) ) → ( ( ¬ 𝐵 <s 𝐴𝐵 <s 𝐶 ) → 𝐴 <s 𝐶 ) )
6 4 5 mpan ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( ( ¬ 𝐵 <s 𝐴𝐵 <s 𝐶 ) → 𝐴 <s 𝐶 ) )
7 3 6 sylbid ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( ( 𝐴 ≤s 𝐵𝐵 <s 𝐶 ) → 𝐴 <s 𝐶 ) )