Metamath Proof Explorer


Theorem sotr2

Description: A transitivity relation. (Read B <_ C and C < D implies B < D .) (Contributed by Mario Carneiro, 10-May-2013)

Ref Expression
Assertion sotr2
|- ( ( R Or A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( ( -. C R B /\ C R D ) -> B R D ) )

Proof

Step Hyp Ref Expression
1 sotric
 |-  ( ( R Or A /\ ( C e. A /\ B e. A ) ) -> ( C R B <-> -. ( C = B \/ B R C ) ) )
2 1 ancom2s
 |-  ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( C R B <-> -. ( C = B \/ B R C ) ) )
3 2 3adantr3
 |-  ( ( R Or A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( C R B <-> -. ( C = B \/ B R C ) ) )
4 3 con2bid
 |-  ( ( R Or A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( ( C = B \/ B R C ) <-> -. C R B ) )
5 breq1
 |-  ( C = B -> ( C R D <-> B R D ) )
6 5 biimpd
 |-  ( C = B -> ( C R D -> B R D ) )
7 6 a1i
 |-  ( ( R Or A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( C = B -> ( C R D -> B R D ) ) )
8 sotr
 |-  ( ( R Or A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( ( B R C /\ C R D ) -> B R D ) )
9 8 expd
 |-  ( ( R Or A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( B R C -> ( C R D -> B R D ) ) )
10 7 9 jaod
 |-  ( ( R Or A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( ( C = B \/ B R C ) -> ( C R D -> B R D ) ) )
11 4 10 sylbird
 |-  ( ( R Or A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( -. C R B -> ( C R D -> B R D ) ) )
12 11 impd
 |-  ( ( R Or A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( ( -. C R B /\ C R D ) -> B R D ) )