Metamath Proof Explorer


Theorem sletri3

Description: Trichotomy law for surreal less-than or equal. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion sletri3 ANoBNoA=BAsBBsA

Proof

Step Hyp Ref Expression
1 slttrieq2 ANoBNoA=B¬A<sB¬B<sA
2 slenlt ANoBNoAsB¬B<sA
3 slenlt BNoANoBsA¬A<sB
4 3 ancoms ANoBNoBsA¬A<sB
5 2 4 anbi12d ANoBNoAsBBsA¬B<sA¬A<sB
6 ancom ¬B<sA¬A<sB¬A<sB¬B<sA
7 5 6 bitrdi ANoBNoAsBBsA¬A<sB¬B<sA
8 1 7 bitr4d ANoBNoA=BAsBBsA