Metamath Proof Explorer


Theorem sletri3

Description: Trichotomy law for surreal less than or equal. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion sletri3 A No B No A = B A s B B s A

Proof

Step Hyp Ref Expression
1 slttrieq2 A No B No A = B ¬ A < s B ¬ B < s A
2 slenlt A No B No A s B ¬ B < s A
3 slenlt B No A No B s A ¬ A < s B
4 3 ancoms A No B No B s A ¬ A < s B
5 2 4 anbi12d A No B No A s B B s A ¬ B < s A ¬ A < s B
6 ancom ¬ B < s A ¬ A < s B ¬ A < s B ¬ B < s A
7 5 6 bitrdi A No B No A s B B s A ¬ A < s B ¬ B < s A
8 1 7 bitr4d A No B No A = B A s B B s A