Metamath Proof Explorer


Theorem sleloe

Description: Surreal less than or equal in terms of less than. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion sleloe
|- ( ( A e. No /\ B e. No ) -> ( A <_s B <-> ( A 

Proof

Step Hyp Ref Expression
1 slenlt
 |-  ( ( A e. No /\ B e. No ) -> ( A <_s B <-> -. B 
2 orcom
 |-  ( ( A  ( A = B \/ A 
3 eqcom
 |-  ( A = B <-> B = A )
4 3 orbi1i
 |-  ( ( A = B \/ A  ( B = A \/ A 
5 2 4 bitri
 |-  ( ( A  ( B = A \/ A 
6 sltso
 |-  
7 sotric
 |-  ( (  ( B  -. ( B = A \/ A 
8 6 7 mpan
 |-  ( ( B e. No /\ A e. No ) -> ( B  -. ( B = A \/ A 
9 8 ancoms
 |-  ( ( A e. No /\ B e. No ) -> ( B  -. ( B = A \/ A 
10 9 con2bid
 |-  ( ( A e. No /\ B e. No ) -> ( ( B = A \/ A  -. B 
11 5 10 syl5bb
 |-  ( ( A e. No /\ B e. No ) -> ( ( A  -. B 
12 1 11 bitr4d
 |-  ( ( A e. No /\ B e. No ) -> ( A <_s B <-> ( A