Metamath Proof Explorer


Theorem sleloe

Description: Surreal less than or equal in terms of less than. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion sleloe A No B No A s B A < s B A = B

Proof

Step Hyp Ref Expression
1 slenlt A No B No A s B ¬ B < s A
2 orcom A < s B A = B A = B A < s B
3 eqcom A = B B = A
4 3 orbi1i A = B A < s B B = A A < s B
5 2 4 bitri A < s B A = B B = A A < s B
6 sltso < s Or No
7 sotric < s Or No B No A No B < s A ¬ B = A A < s B
8 6 7 mpan B No A No B < s A ¬ B = A A < s B
9 8 ancoms A No B No B < s A ¬ B = A A < s B
10 9 con2bid A No B No B = A A < s B ¬ B < s A
11 5 10 syl5bb A No B No A < s B A = B ¬ B < s A
12 1 11 bitr4d A No B No A s B A < s B A = B