Metamath Proof Explorer


Theorem sleloe

Description: Surreal less-than or equal in terms of less-than. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion sleloe ANoBNoAsBA<sBA=B

Proof

Step Hyp Ref Expression
1 slenlt ANoBNoAsB¬B<sA
2 orcom A<sBA=BA=BA<sB
3 eqcom A=BB=A
4 3 orbi1i A=BA<sBB=AA<sB
5 2 4 bitri A<sBA=BB=AA<sB
6 sltso <sOrNo
7 sotric <sOrNoBNoANoB<sA¬B=AA<sB
8 6 7 mpan BNoANoB<sA¬B=AA<sB
9 8 ancoms ANoBNoB<sA¬B=AA<sB
10 9 con2bid ANoBNoB=AA<sB¬B<sA
11 5 10 bitrid ANoBNoA<sBA=B¬B<sA
12 1 11 bitr4d ANoBNoAsBA<sBA=B