Metamath Proof Explorer


Theorem sltnle

Description: Surreal less-than in terms of less-than or equal. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion sltnle ANoBNoA<sB¬BsA

Proof

Step Hyp Ref Expression
1 slenlt BNoANoBsA¬A<sB
2 1 ancoms ANoBNoBsA¬A<sB
3 2 con2bid ANoBNoA<sB¬BsA