Metamath Proof Explorer


Theorem brdif

Description: The difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2011)

Ref Expression
Assertion brdif ARSBARB¬ASB

Proof

Step Hyp Ref Expression
1 eldif ABRSABR¬ABS
2 df-br ARSBABRS
3 df-br ARBABR
4 df-br ASBABS
5 4 notbii ¬ASB¬ABS
6 3 5 anbi12i ARB¬ASBABR¬ABS
7 1 2 6 3bitr4i ARSBARB¬ASB