Metamath Proof Explorer


Theorem sbcbr123

Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005) (Revised by NM, 22-Aug-2018)

Ref Expression
Assertion sbcbr123 [˙A/x]˙BRCA/xBA/xRA/xC

Proof

Step Hyp Ref Expression
1 sbcex [˙A/x]˙BRCAV
2 br0 ¬A/xBA/xC
3 csbprc ¬AVA/xR=
4 3 breqd ¬AVA/xBA/xRA/xCA/xBA/xC
5 2 4 mtbiri ¬AV¬A/xBA/xRA/xC
6 5 con4i A/xBA/xRA/xCAV
7 dfsbcq2 y=AyxBRC[˙A/x]˙BRC
8 csbeq1 y=Ay/xB=A/xB
9 csbeq1 y=Ay/xR=A/xR
10 csbeq1 y=Ay/xC=A/xC
11 8 9 10 breq123d y=Ay/xBy/xRy/xCA/xBA/xRA/xC
12 nfcsb1v _xy/xB
13 nfcsb1v _xy/xR
14 nfcsb1v _xy/xC
15 12 13 14 nfbr xy/xBy/xRy/xC
16 csbeq1a x=yB=y/xB
17 csbeq1a x=yR=y/xR
18 csbeq1a x=yC=y/xC
19 16 17 18 breq123d x=yBRCy/xBy/xRy/xC
20 15 19 sbiev yxBRCy/xBy/xRy/xC
21 7 11 20 vtoclbg AV[˙A/x]˙BRCA/xBA/xRA/xC
22 1 6 21 pm5.21nii [˙A/x]˙BRCA/xBA/xRA/xC