Step |
Hyp |
Ref |
Expression |
1 |
|
df-0s |
|- 0s = ( (/) |s (/) ) |
2 |
|
snelpwi |
|- ( X e. No -> { X } e. ~P No ) |
3 |
|
nulsslt |
|- ( { X } e. ~P No -> (/) < |
4 |
2 3
|
syl |
|- ( X e. No -> (/) < |
5 |
4
|
adantr |
|- ( ( X e. No /\ ( bday ` X ) = (/) ) -> (/) < |
6 |
|
nulssgt |
|- ( { X } e. ~P No -> { X } < |
7 |
2 6
|
syl |
|- ( X e. No -> { X } < |
8 |
7
|
adantr |
|- ( ( X e. No /\ ( bday ` X ) = (/) ) -> { X } < |
9 |
|
id |
|- ( ( bday ` X ) = (/) -> ( bday ` X ) = (/) ) |
10 |
|
0ss |
|- (/) C_ ( bday ` x ) |
11 |
9 10
|
eqsstrdi |
|- ( ( bday ` X ) = (/) -> ( bday ` X ) C_ ( bday ` x ) ) |
12 |
11
|
a1d |
|- ( ( bday ` X ) = (/) -> ( ( (/) < ( bday ` X ) C_ ( bday ` x ) ) ) |
13 |
12
|
adantl |
|- ( ( X e. No /\ ( bday ` X ) = (/) ) -> ( ( (/) < ( bday ` X ) C_ ( bday ` x ) ) ) |
14 |
13
|
ralrimivw |
|- ( ( X e. No /\ ( bday ` X ) = (/) ) -> A. x e. No ( ( (/) < ( bday ` X ) C_ ( bday ` x ) ) ) |
15 |
|
0elpw |
|- (/) e. ~P No |
16 |
|
nulssgt |
|- ( (/) e. ~P No -> (/) < |
17 |
15 16
|
ax-mp |
|- (/) < |
18 |
|
eqscut2 |
|- ( ( (/) < ( ( (/) |s (/) ) = X <-> ( (/) < ( bday ` X ) C_ ( bday ` x ) ) ) ) ) |
19 |
17 18
|
mpan |
|- ( X e. No -> ( ( (/) |s (/) ) = X <-> ( (/) < ( bday ` X ) C_ ( bday ` x ) ) ) ) ) |
20 |
19
|
adantr |
|- ( ( X e. No /\ ( bday ` X ) = (/) ) -> ( ( (/) |s (/) ) = X <-> ( (/) < ( bday ` X ) C_ ( bday ` x ) ) ) ) ) |
21 |
5 8 14 20
|
mpbir3and |
|- ( ( X e. No /\ ( bday ` X ) = (/) ) -> ( (/) |s (/) ) = X ) |
22 |
1 21
|
eqtr2id |
|- ( ( X e. No /\ ( bday ` X ) = (/) ) -> X = 0s ) |
23 |
22
|
ex |
|- ( X e. No -> ( ( bday ` X ) = (/) -> X = 0s ) ) |
24 |
|
fveq2 |
|- ( X = 0s -> ( bday ` X ) = ( bday ` 0s ) ) |
25 |
|
bday0s |
|- ( bday ` 0s ) = (/) |
26 |
24 25
|
eqtrdi |
|- ( X = 0s -> ( bday ` X ) = (/) ) |
27 |
23 26
|
impbid1 |
|- ( X e. No -> ( ( bday ` X ) = (/) <-> X = 0s ) ) |