Metamath Proof Explorer


Theorem bday0b

Description: The only surreal with birthday (/) is 0s . (Contributed by Scott Fenton, 8-Aug-2024)

Ref Expression
Assertion bday0b ( 𝑋 No → ( ( bday 𝑋 ) = ∅ ↔ 𝑋 = 0s ) )

Proof

Step Hyp Ref Expression
1 df-0s 0s = ( ∅ |s ∅ )
2 snelpwi ( 𝑋 No → { 𝑋 } ∈ 𝒫 No )
3 nulsslt ( { 𝑋 } ∈ 𝒫 No → ∅ <<s { 𝑋 } )
4 2 3 syl ( 𝑋 No → ∅ <<s { 𝑋 } )
5 4 adantr ( ( 𝑋 No ∧ ( bday 𝑋 ) = ∅ ) → ∅ <<s { 𝑋 } )
6 nulssgt ( { 𝑋 } ∈ 𝒫 No → { 𝑋 } <<s ∅ )
7 2 6 syl ( 𝑋 No → { 𝑋 } <<s ∅ )
8 7 adantr ( ( 𝑋 No ∧ ( bday 𝑋 ) = ∅ ) → { 𝑋 } <<s ∅ )
9 id ( ( bday 𝑋 ) = ∅ → ( bday 𝑋 ) = ∅ )
10 0ss ∅ ⊆ ( bday 𝑥 )
11 9 10 eqsstrdi ( ( bday 𝑋 ) = ∅ → ( bday 𝑋 ) ⊆ ( bday 𝑥 ) )
12 11 a1d ( ( bday 𝑋 ) = ∅ → ( ( ∅ <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) → ( bday 𝑋 ) ⊆ ( bday 𝑥 ) ) )
13 12 adantl ( ( 𝑋 No ∧ ( bday 𝑋 ) = ∅ ) → ( ( ∅ <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) → ( bday 𝑋 ) ⊆ ( bday 𝑥 ) ) )
14 13 ralrimivw ( ( 𝑋 No ∧ ( bday 𝑋 ) = ∅ ) → ∀ 𝑥 No ( ( ∅ <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) → ( bday 𝑋 ) ⊆ ( bday 𝑥 ) ) )
15 0elpw ∅ ∈ 𝒫 No
16 nulssgt ( ∅ ∈ 𝒫 No → ∅ <<s ∅ )
17 15 16 ax-mp ∅ <<s ∅
18 eqscut2 ( ( ∅ <<s ∅ ∧ 𝑋 No ) → ( ( ∅ |s ∅ ) = 𝑋 ↔ ( ∅ <<s { 𝑋 } ∧ { 𝑋 } <<s ∅ ∧ ∀ 𝑥 No ( ( ∅ <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) → ( bday 𝑋 ) ⊆ ( bday 𝑥 ) ) ) ) )
19 17 18 mpan ( 𝑋 No → ( ( ∅ |s ∅ ) = 𝑋 ↔ ( ∅ <<s { 𝑋 } ∧ { 𝑋 } <<s ∅ ∧ ∀ 𝑥 No ( ( ∅ <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) → ( bday 𝑋 ) ⊆ ( bday 𝑥 ) ) ) ) )
20 19 adantr ( ( 𝑋 No ∧ ( bday 𝑋 ) = ∅ ) → ( ( ∅ |s ∅ ) = 𝑋 ↔ ( ∅ <<s { 𝑋 } ∧ { 𝑋 } <<s ∅ ∧ ∀ 𝑥 No ( ( ∅ <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) → ( bday 𝑋 ) ⊆ ( bday 𝑥 ) ) ) ) )
21 5 8 14 20 mpbir3and ( ( 𝑋 No ∧ ( bday 𝑋 ) = ∅ ) → ( ∅ |s ∅ ) = 𝑋 )
22 1 21 syl5req ( ( 𝑋 No ∧ ( bday 𝑋 ) = ∅ ) → 𝑋 = 0s )
23 22 ex ( 𝑋 No → ( ( bday 𝑋 ) = ∅ → 𝑋 = 0s ) )
24 fveq2 ( 𝑋 = 0s → ( bday 𝑋 ) = ( bday ‘ 0s ) )
25 bday0s ( bday ‘ 0s ) = ∅
26 24 25 eqtrdi ( 𝑋 = 0s → ( bday 𝑋 ) = ∅ )
27 23 26 impbid1 ( 𝑋 No → ( ( bday 𝑋 ) = ∅ ↔ 𝑋 = 0s ) )